DeepResource

Observing the world of renewable energy and sustainable living

Unconventional Pumped Hydro Storage

Taum Sauk Hydroelectric Power Station, Ozarks, Missouri, USA

[wikipedia.org] – List of pumped-storage hydroelectric power stations
[wikipedia.org] – Pumped-storage hydroelectricity

[amusingplanet.com] – Taum Sauk Hydroelectric Power Station
[wikipedia.org] – Taum Sauk Hydroelectric Power Station
[Google Maps] – Taum Sauk Hydroelectric Power Station

Building an adequate energy storage system is one of the central challenges of the renewable energy transition. Pumped hydro storage is a very important option. Most people associate this with a dam in a valley behind which water can be pumped upwards in times of excess renewable energy available, in order for it to be released later, when the electricity is required.

But there are more options. One of them is building a large reservoir on top of mountain. Another one, attractive for the flatlanders, is building a high dike in the sea.

Loucna nad Desnou, Czech Republic.

Elevation: 510 m (highest in Europe),
Reservoirs: 2.7 million m3 (higher) and 3.4 million m3 (lower)
Pump-generators: 2 x 325 MW

[wikipedia.org] – Dlouhé stráně Hydro Power Plant
[Google Maps] – Přečerpávací vodní elektrárna Dlouhé stráně
[virtualniprohlidky.cez.cz] – Panoramic view. Note the lower reservoir.

Cortes-la Muela Powerplant, Valencia, Spain

More than 2 GW, generating 5,000 GWh/year.

[energystorageexchange.org] – La Muela pumped-storage plant
[Google Maps] – Cortes-la Muela Powerplant

[source] So-called Plan Lievense, dating from 1981. With the massive Dutch multi-GW wind power plans for the North Sea, to be realized before 2023, some form of energy storage is inevitable. One of the options is building dike structure that allow for fluctuating water levels of up to 40 meter.

Design consists of a closed ring-shaped dike of ca. 6 x 10 km. Water levels will very from 32 to 40 meter under the water level of the surrounding North Sea. Lake surface area: ca. 40 km2. Storage capacity is more than 20 GWh (value 5 million euro consumer end price of 25 cent/kWh), sufficient to produce 1,500 MW during at least 12 hours to the national grid. this plan could be profitable from 9 GW wind offshore wind power, expected after 2020..

[publicwiki.deltares.nl] – Energie-eiland in de Noordzee
[nl.wikipedia.org] – Plan Lievense

Plan Brouwersmeer near the coast of the Zeeland province, an implementation of the Plan Lievense.

[Google Maps] – Brouwersmeer

Planning stage – energy island near Belgian coast

[deepresource] – Pumped Hydro Storage

Advertisements

Single Post Navigation

Comments are closed.

%d bloggers like this: