Observing the renewable energy transition from a European perspective

Nyrstar – The Next Royal Dutch Shell?

The European Union has decided it wants a 100% renewable energy future and as the saying goes: “He Who Says A Must Say B”, with “A” being a renewable energy base and “B” the required energy storage facilities. This implies giant business opportunities for those companies, that can provide for large-scale energy storage options, options that become a necessity if a society begins to heavily rely on intermittent renewable energy sources solar and wind. Batteries and pumped-hydro can only provide hours worth of storage. What is really required are seasonal storage options, with a size in the order of 40% of annual primary energy consumption, to be able to completely compensate intermittency and waive energy demand management.

Several candidates for seasonal storage exist. First of all the largest share of primary energy consumption is used for space heating. A lot of fossil fuel can be saved if solar heat is stored in large bodies of water or other bulk materials. Excess renewable electricity can be converted in hydrogen and if necessary further converted into other forms of chemical energy that are easier to maintain than hydrogen, like ammonia (NH3), natural gas (CH4).

A relatively unknown possibility is using hydrogen to reduce metal-oxide powder (“reduce” as in: “strip of oxygen”) and turn it into pure metal powder that can be burned again, back to metal-oxide, thus creating a carbon-free closed-loop. Few people realize that metals can burn, a process mundanely known as “rusting”, yet they can, as fine-grained powders, the finer the better:

In contrast to hydrogen, metal powders like iron can be stored, moved around, traded easily at room temperature and ambient pressure for as long as you want, provided you keep moist away. Potentially suitable metal-powder-as-fuel candidates are: lithium (Li), boron (B), magnesium (Mg), aluminum (Al), silicon (Si), iron (Fe), and zinc (Zn).

IF metal-powder can assert itself as an efficient energy storage vehicle for the 21st century, dominated by the EU renewable energy policy and Paris Accords, the sky is the limit for those companies already specialized in reducing metal ores into pure metals. They could become the successors of the Seven Sisters that dominated the 20th century and become the energy companies of the 21st century in that they lay their hands on every renewable kWh and convert it into metal powder.

This possibility has been recognized by Zinc-giant Nyrstar, located near the small town of Budel-Schoot in the South of the Netherlands at the Belgian border, conveniently situated at a run-down, but upgradable “Iron Rhine” railway-line, connecting the Antwerp Harbor and the German industrial Ruhr-valley heartland. This is the rationale behind the recently initiated Metalot energy storage campus, located next to the Nyrstar zinc factory in Budel-Schoot.

[] – Budel

[] – Nyrstar
[] – Recyclable metal fuels for clean and compact zero-carbon power
[deepresource] – How Much Storage is Needed?
[Google Maps] – Nyrstar, Budel-Schoot
[deepresource] – Iron Rhine Revitalized?

Single Post Navigation

Comments are closed.

%d bloggers like this: