DeepResource

Observing the world of renewable energy and sustainable living

Archive for the month “March, 2019”

Hydrogen Economy in the Orkney Islands

[Source]

The Scottish Orkney islands produce more renewable electricity from tidal and waves than it can consume, which creates some space to experiment a little, with hydrogen. The largest distance on the main island is merely 24 miles, so max. vehicle range is not an issue. Now the inhabitants have a dream of running their cars, ferries and boilers on hydrogen. All of them. With 21,000 inhabitants the project seems to be doable. By 2021, the world’s first hydrogen sea-going ferry should be in operation here. The ambition of the people of Orkney is to be an inspiration for others.

[bbc.com] – How hydrogen is transforming these tiny Scottish Islands

[Source]

Read more…

Corporate Off-Grid With HBr Flow Battery Storage

HBr batteries cost 5% of standard Lithium batteries.

A second option is sea salt batteries.

Ecovat – What’s new?


(Dutch language)

When talking about renewable energy, most people have associations with solar panels and wind turbines. The reality in Europe is though that 50% of the fossil energy budget is spent on space heating. Seasonal storage of heat offer perhaps the largest potential to really save on fossil fuel consumption. The Dutch startup Ecovat provides seasonal storage of heat solutions at a scale of a few hundred households. One 1,000 MWh Ecovat is the storage equivalent of 70,000 Tesla Ppowerwall 2. Ecovat estimates the market potential in the Netherlands of 2,000 vessels or more.

[deepresource] – Ecovat Update
[deepresource] – Ecovat Seasonal Heat Storage
[ecovat.eu] – Duurzame Doeners – Het verhaal van Ecovat
[kivi.nl] – Na aardgas komt Ecovat

Ecovat system, suitable for projects in the order of 500 households

Ecovat data sheet: relationship size and storage capacity

XL Ecovat 800 apartments project (realization 2018). Diameter 45m. Concrete elements shipped by boat over adjacent canal.

HBO Chernobyl

Energy Transition Index 2019

The World Economic Forum studied 115 countries to see which ones were the best prepared to achieve the renewable energy transition first. The result was no surprise: Europe is best positioned, just like last year.

The report says despite the diversity of the top performing nations in their primary energy mix, systems and resources, they all share certain characteristics, demonstrating a combination of technical advances and effective policy-making and implementation.

Countries with high ETI scores also performed well on their readiness for energy transition, with Finland topping that list, followed by Denmark, and Austria in third.

Again, these countries have commonalities: stable regulatory frameworks, innovative business environments capable of attracting investment and strong political commitment to energy transition.

[weforum.org] – European Countries Are The Most Ready For Global Energy Transition

Progress on the Construction of the Nord Stream 2 Pipeline

Molten Salt Storage

Ammonia as the Fuel of the Future

The hydrogen economy may experience a revival, the old problems still exist. Hydrogen is, to put it mildly, not easy to handle. Fortunately there are derivatives from hydrogen as an energy storage medium, that solve some of the hydrogen problems. Ammonia is one of them. A new impetus in that direction comes from the university of Aarhus in Denmark. The progress made entails improved methods of producing N2 and H2 without fossil fuel. Ammonia (NH3) is subsequently produced in the conventional way and is to be burned as a liquid fuel in a fuel cell. Ammonia is to be produced solely with the ingredients electricity, water and air. The projects is concentrating on heavy traffic (ships, trains).

The German company MAN is planning to have an ammonia-fueled marine engine operational by 2022.

Challenges that remain: low flammability and incomplete combustion of ammonia, resulting in undesirable NOx emissions. Ammonia is toxic for humans

[ingenioer.au.dk] – AU researchers develop the carbon-free fuel of the future from air, water and electricity
[eng.au.dk/en] – the “perps”
[cleantechnica.com] – The Potential Of Ammonia As Carbon-Free Fuel — Major New Research Project At The University Of Aarhus
[nh3fuelassociation.org] – Ship Operation Using LPG and Ammonia As Fuel on MAN B&W Dual Fuel ME-LGIP Engines
[ammoniaenergy.org] – MAN Energy Solutions: an ammonia engine for the maritime sector
[man-es.com] – MAN corporate site

[deepresource] – Ammonia (NH3) as Storage Medium for Renewable Energy
[deepresource] – First Climate Neutral Power Station in The Netherlands
[deepresource] – The Netherlands is Placing its Bets on the Hydrogen Economy

Hydrogen – the Fuel of the Future?

Shell sponsored video.

Scientists Transmit Electricity Wirelessly Through the Air

Youtube text:

Since the 1960s, space enthusiasts and international space agencies have had one dream: to collect solar power and use it on earth. What seemed utopic more than 40 years ago is about to become reality: the Japanese Aerospace Exploration Agency JAXA especially is hell-bent on harvesting solar energy from space by 2030.

Researchers from the Japan Aerospace Exploration Agency (JAXA) managed to transfer 1.8 kilowatts of power via microwaves to a specific receiver located at a distance of 170 feet (55 meters). You may think that it’s not such an impressive distance, and the delivered energy was only enough to power an electric kettle, but the experiment opens up new prospects for alternative energy research. In particular, similar technology could be utilized for collecting solar energy in space and delivering it to Earth. In fact, this is how the International Space Station is powered – it converts sunlight into electric current with the help of solar cells placed on its solar array wings.

The Japanese Science and Economy and Trade Ministry are currently pushing the project, set to launch in 2030. Just last month they put together the Institute for Unmanned Space Experiment Free Flyer (USEF) consortium consisting of several high-tech giants such as Mitsubishi Electric, NEC, Fujitsu and Sharp. Given that Japan has few energy resources of its own and therefore relies heavily on oil imports, it is no surprise that the country has long been a leader when it comes to solar and other renewable energies.

It seems that after more than a century, someone eventually managed to come close to Nikola Tesla’s breakthrough in transferring wireless electric power. Japanese scientists for the first time succeeded in transmitting electricity wirelessly through the air.

In any case, I strongly believe that the world community will soon realize that alternative sources of energy are the only way for humanity to survive. While definitely different than Tesla’s idea of FREE energy, if the SSPS is finally implemented, we would have a permanent supply of wireless electric power regardless of the time of the day and the weather conditions.

Shell to be the World’s Largest Electricity Producer by 2030

[source]

Royal Dutch Shell Plc plans to become the world’s biggest power company despite electricity’s historically narrow margins.

The world’s second-largest oil explorer by market value is spending up to $2 billion a year on its new energies division, mainly to grow in a power sector it envisions delivering 8 percent to 12 percent annual returns, according to Maarten Wetselaar, director of Shell’s integrated gas new energies unit.

“We believe we can be the largest electricity power company in the world in the early 2030s,” Wetselaar said in an interview with Bloomberg TV on Monday. “We are not interested in the power business because we like what we saw in the last 20 years. We are interested because we think we like what we see in the next 20 years.”

[bloomberg.com] – Shell Says It Can Be World’s Top Power Producer and Profit
[royaldutchshellgroup.com] – Shell says it can be top power producer and make money
[cleanenergywire.org] – Shell says Sonnen purchase part of effort to become world’s largest power company
[businessinsider.nl] – Shell wil in 2030 het grootste stroombedrijf ter wereld zijn

Thermal Solar to Electricity Conversion Efficiency 34% With Stirling Engine

CSP-Stirling is known to have the highest efficiency of all solar technologies (around 30%, compared to solar photovoltaic’s approximately 15%), and is predicted to be able to produce the cheapest energy among all renewable energy sources in high-scale production and hot areas, semi-deserts, etc.[citation needed] A dish Stirling system uses a large, reflective, parabolic dish (similar in shape to a satellite television dish). It focuses all the sunlight that strikes the dish up onto a single point above the dish, where a receiver captures the heat and transforms it into a useful form. Typically the dish is coupled with a Stirling engine in a Dish-Stirling System, but also sometimes a steam engine is used. These create rotational kinetic energy that can be converted to electricity using an electric generator.

In 2005 Southern California Edison announced an agreement to purchase solar powered Stirling engines from Stirling Energy Systems over a twenty-year period and in quantities (20,000 units) sufficient to generate 500 megawatts of electricity. In January 2010, Stirling Energy Systems and Tessera Solar commissioned the first demonstration 1.5-megawatt power plant (“Maricopa Solar”) using Stirling technology in Peoria, Arizona. At the beginning of 2011 Stirling Energy’s development arm, Tessera Solar, sold off its two large projects, the 709 MW Imperial project and the 850 MW Calico project to AES Solar and K.Road, respectively. In 2012 the Maricopa plant was bought and dismantled by United Sun Systems. United Sun Systems released a new generation system, based on a V-shaped Stirling engine and a peak production of 33 kW. The new CSP-Stirling technology brings down LCOE to USD 0.02 in utility scale.[citation needed]

According to its developer, Rispasso Energy, a Swedish firm, in 2015 its Dish Sterling system being tested in the Kalahari Desert in South Africa showed 34% efficiency.

Website comment: interesting! But one would tentatively guess that an array of solar panels will probably be cheaper in a long-term per kWh cost.

[wikipedia.org] – Solar Thermal Energy, Dish Designs
[ripassoenergy.com] – Company Site

Stirling Motor for Flying?

Robert McConaghy created the first flying stirling engine powered aircraft in August 1986. The Beta type engine weighed 360 grams, and produced only 20 Watts of power. The engine was attached to the front of a modified Super Malibu radio control glider with a gross takeoff weight of 1 kg. The best published test flight lasted 6 minutes and exhibited “barely enough power to make the occasional gentle turn and maintain altitude”

The main argument against using a Stirling engine in an aircraft was its weight. But with the rise of new strong and lightweight materials, conditions could change.

[wikipedia.org] – Airbus (formerly EADS)
[wikipedia.org] – Stirling Engine
[freepatentsonline.com] – Stirling Engine for an Emission-free Aircraft (EADS, 2016)
[patents.google.com] – Stirling engine with flapping wing for an emission-free aircraft (EADS, 2011)
[uspto.gov] – Solar thermal aircraft (2004, Lawrence Livermore)
[banggood.com] – Aircraft Hot Air Power Generator Innovative Stirling Engine

Stirling Engine & Solar Thermal Power

Simple solar thermal power with a Stirling engine. Storage comes included.

[pointfocus.com] – EuroDish – Stirling System Description
[azelio.com] – Company site
[swedishcleantech.com] – Company site

Read more…

UCG R&D in the US

Major 2017 US UCG study, saying that UCG can be a viable source of fossil energy, but that the technology had its heyday in the seventies and eighties and was abandoned then and a lot of senior knowledge and skills has evaporated since. This study supports our attitude that their is no lack of fossil to worry about. The real constraint is the capacity or lack thereof of the environment and atmosphere in particular to absorb all that burned fossil fuel without major consequences for the biosphere. Don’t worry about depletion, worry about how to get away as quickly as possible from fossil fuel.

[e-reports-ext.llnl.gov] – A Review of Underground Coal Gasification Research and Development in the US (2017). David W. Camp – Lawrence Livermore National Laboratory

Here chapter 10 from the report in full, with our highlights:

10 Concluding remarks

Recent U.S. work between 2005 and 2014 improved understanding of UCG’s environmental aspects, produced improved models, matured site selection processes, and contributed to the review and sharing of UCG information. But the main program of the 1970’s and 1980’s is when the big contributions were made.

The United States work of the 1970’s and 1980’s produced great advances in UCG understanding and technical accomplishments. The technical feasibility of UCG was demonstrated convincingly in the western world. It showed that UCG operations could be designed, constructed, started, operated, and shut down safely. The U.S. started with reports from the Soviet Union that described UCG operations and phenomena, making use of Soviet methods during many field tests. Multiple organizations working at different sites developed a breadth and depth of competence and understanding of UCG, and used this expertise to experiment, innovated, and make great advancements in UCG capabilities, and technology.

Air was injected to make low heating value gas (4-7 MJ/Nm3), and mixtures of oxygen and steam were injected to make medium heating value gas (8-13 MJ/Nm3). U.S. field test operations were at the scale of 1,000 to 10,000 tons of coal in a single module, although some of the modules had multiple burn cavities in them.

Operations almost always ended up working, but they did not always go smoothly as planned. Hardware issues and challenges in the underground and extremely hot environment were a frequent reminder that UCG is still low on the technological development curve towards mature industrial practice.

Some field tests resulted in groundwater contamination. This led to a much greater awareness and understanding of this problem, and recommended approaches to minimize it. The final Rocky Mountain 1 test used many of these and contamination was minor, local, and reduced to deminimus levels after a period of pumping. It remains to be seen if subsequent UCG operations, especially ones at scale can be operated with acceptably low environmental impacts.

Technologies were developed, making use of the rapidly improving technology of directional or horizontal drilling and well completions. These showed promise for scale-up to larger and deeper operations while retaining process efficiency and control. ELW had first been tried in a successful improvisation at Hoe Creek III, and then fielded at Rocky Mountain 1. The greatest technological advance was the invention of the CRIP technique. After successful demonstration in the Centralia field test, CRIP was fielded and performed excellently at the Rocky Mountain 1 test. Designs based on CRIP show great promise for cost-effective scale-up to large, deep and efficient operations.

Most of the early large-scale designs and plans naively assumed that large industrial scale operations would be scaled up with a simple pilot program to gather values for a few key parameters. The complexity and difficulty of UCG was such that despite a long well-funded program, the final field test, while deploying many technical and environmental advances, was not much more than twice the size of the first field test, 14 years earlier. There were no long-term operations of multiple modules or the execution of a full “mine plan.” This was not for lack of interest or enthusiasm for industrial scale – scaleup to a size that would help U.S. energy security was always on researchers minds and addressed in nearly every report.

Doing UCG well, smoothly, and with low environmental impact was simply difficult and required experience and improved methods that needed to be invented and practiced. Much of the test design, construction, and operations were being tried for the first or second time by people doing these things for the first or second time. They faced the challenges always posed by geology, thermal processing of coal, and process engineering pilot start-ups, often in remote locations in harsh weather.

This was a period of strong and continued investment, intense activity, and a great pace of development and learning. Some of the keys to its technical success were long-term continuity of funding and the institutions working on it, sharing of results in public conferences and reports, and determination to understand UCG and make improvements.

While the many field tests formed the centerpiece of the program, they were not isolated activities. The program was robust and well rounded. Measurements of gas composition and quality were made to understand and improve the process, not to advertise success. There was iteration between field test observations, scientific understanding of phenomena, modeling, and lab experiments, with each informing and improving the other. Field tests were first and foremost experimental trials and innovation test-beds. They were not marketing endeavors designed to attract investors and project partners. They emphasized learning, understanding, and technical advancement over simple metrics such as tons gasified. Field tests were highly instrumented and monitored, and drill-backs were common. The mechanisms and geometries of cavity growth, and the contents and nature of the cavities became understood. Conceptual models of the process evolved to better explain and predict observed phenomena.

Program participation was well-rounded. Government research institutions led much of the field test and modeling work. Large energy companies and small UCG-niche companies also had programs that typically included field tests, sometimes with government support and sometimes not. University researchers were involved with laboratory experiments and model development. Experience, capabilities, and knowledge and insight were gained by those actively involved. A sizeable cadre of competent researchers, engineers, and technicians by the 1980’s made the potential growth of an industry feasible. This has now been lost, as all but the most junior of participants of that generation are past retirement age.

Their legacy of reports, and reviews such as this one can convey only a fraction of what these workers knew.

The Annual UCG Symposia tied all these efforts together, fostering communication among researchers to build upon each other. Organized by the DOE, participation and written papers were expected of DOE-funded projects, but many others attended and presented. Because of government funding, a large fraction of the activities was documented well in publicly accessible reports.

UCG understanding and technology advanced in the U.S. in a crucible that mixed creative ideas and the hard realities of field test operations. Observations and results, surprises and disappointments, revisions to mental and mathematical models, and the desire to understand and innovate moved the researchers toward better ways of doing UCG.

A consensus developed in the U.S. that UCG’s future would be in deep horizontal seams of moderate to large thickness, ideally with low-permeability coal and surrounding strata, and a strong overburden. Directional drilling and CRIP appeared best for process control, efficiency and economics. Further testing and development would be needed to assure its reliability, sort out a preference for its linear or parallel embodiment, optimize it, and/or innovate to something even better.

The U.S. UCG program of the 1970’s and 1980’s was extraordinarily productive and successful at advancing a difficult technology. It began with very little domestic knowledge or experience. It ended with a large cadre of experts, successful single-module field tests, a good understanding of the phenomena involved, predictive models, new and more efficient technology and methods, and a good understanding and plans of what next steps were needed to scale up and mature to large-scale industrial operations.

Nera – The World’s First Fully 3D-Printed e-Motorbike

[cnn.com] – Electric 3D-printed motorbike provides a glimpse into the future of green travel

Post Navigation