DeepResource

Observing the world of renewable energy and sustainable living

Developments in Offshore Wind Jack-Up Market

New offshore wind installation mega-vessel “Voltaire”, able to lift 3,000 ton, ordered by Jan de Nul, Belgium, scheduled to become operational in 2022.

According to Bloomberg there are merely a dozen ships in the world that can install a large offshore wind turbine, which is understandable with a list price of ca. 300 million euro per ship. Currently almost all these vessels are operating in European waters. Europe is uniquely blessed with ca. 600,000 km2 shallow water with high wind speeds (North Sea, Baltic and Irish Sea, together an area larger than France) that can be utilized for offshore wind, in principle enough to supply the entire EU (300 GW on average), three-five times over.

[deepresource] – The Giants of a New Energy Age
[deepresource] – European Wind Energy Potential
[deepresource] – The Enormous Energy Potential of the North Sea
[deepresource] – Unleashing Europe’s Offshore Wind Potential 2030

Principle offshore wind installation vessel illustrated. About one turbine foundation can be realized per day or 4 per week, if fetching a new batch in port is included. The next generation is 10 MW, 13 MW is in the pipeline. Take the Netherlands: 13 GW average electricity consumption. That could be covered by 1,000 wind turbines, or 2,000 rather, if a conservative capacity factor of 50% for large turbines is taken into account. That’s 500 weeks or 10 years installation time. So, a single ship can realize the electricity transition of a country like Holland in a decade. For 100% renewable primary energy we need to calculate twice the amount of electricity consumed today, that’s only two decades! Productivity could be significantly enhanced if a simple cheap barge and tugboat is used to fetch a new batch of 4-6 monopiles from the harbor in Rotterdam, Vlissingen or Eemshaven, while the expensive installation vessel Aeolus merrily hammers away full-time. In that case 4,000 13 MW turbines could be installed in 4,000 days or 11 years. Note that in the mean time a lot of additional solar and onshore wind capacity has been, c.q. will be built. In conclusion: this single ship Aeolus is able to complete the energy transition of the Netherlands, the #17 in the global GDP ranking before 2030, not 2050 as the EU demands. Most likely developing sufficient storage capacity will be the real bottleneck, not electricity generation capacity.

1600 GW waiting to be raked in. EU average power consumption 300 GW. The old continent has no conventional fossil fuel reserves worth mentioning, fortunately Europe doesn’t need to. Armed with the Paris Climate Accords, Europe effectively dissed everybody else his fossil fuel reserves and is offering a viable alternative instead.

Some recent developments in the fields of offshore jack-up vessels:

[bloomberg.com] – Offshore Wind Will Need Bigger Boats. Much Bigger Boats
[auxnavaliaplus.org] – Vessels and platforms for the emerging wind market (pdf, 108p)
[deme-group.com] – DEME’s giant installation vessel ‘Orion’ launched in China
[a2sea.com] – A2SEA Invests in a New Jack-up Vessel
[4coffshore.com] – Construction Progressing for Next Gen Vessel
[cemreshipyard.com] – Offshore Vessels Demand for Offshore Wind Activities
[windenergie-magazine.nl] – Jan de Nul orders new installation vessel
[jandenul.com] – Getting ready for the next generation of offshore wind projects
[offshorewind.biz] – Jan De Nul Orders Mega Jack-Up
[industryreports24.com] – Massive hike by Wind Turbine Installation Vessel Market
[renews.biz] – Japan joins offshore wind jack-up brigade
[maritime-executive.com] – Wind Tower Service Firm Plans to Build Jones Act Ships
[iro.nl] – New design jack-up vessels to strengthen Ulstein’s offshore wind ambitions
[newenergyupdate.com] – Flurry US offshore vessel deals prepares market for huge turbines

Single Post Navigation

Comments are closed.

%d bloggers like this: