DeepResource

Observing the world of renewable energy and sustainable living

Archive for the category “storage”

Dlouhé Stráně Hydro-Electric Powerstation

[wikipedia.org] – Dlouhé stráně Hydro Power Plant
[Google Maps] – Dlouhé Stráně, Czech Republic

Read more…

Unconventional Pumped Hydro Storage

Taum Sauk Hydroelectric Power Station, Ozarks, Missouri, USA

[wikipedia.org] – List of pumped-storage hydroelectric power stations
[wikipedia.org] – Pumped-storage hydroelectricity

[amusingplanet.com] – Taum Sauk Hydroelectric Power Station
[wikipedia.org] – Taum Sauk Hydroelectric Power Station
[Google Maps] – Taum Sauk Hydroelectric Power Station

Building an adequate energy storage system is one of the central challenges of the renewable energy transition. Pumped hydro storage is a very important option. Most people associate this with a dam in a valley behind which water can be pumped upwards in times of excess renewable energy available, in order for it to be released later, when the electricity is required.

But there are more options. One of them is building a large reservoir on top of mountain. Another one, attractive for the flatlanders, is building a high dike in the sea.

Loucna nad Desnou, Czech Republic.

Elevation: 510 m (highest in Europe),
Reservoirs: 2.7 million m3 (higher) and 3.4 million m3 (lower)
Pump-generators: 2 x 325 MW

[wikipedia.org] – Dlouhé stráně Hydro Power Plant
[Google Maps] – Přečerpávací vodní elektrárna Dlouhé stráně
[virtualniprohlidky.cez.cz] – Panoramic view. Note the lower reservoir.

Cortes-la Muela Powerplant, Valencia, Spain

More than 2 GW, generating 5,000 GWh/year.

[energystorageexchange.org] – La Muela pumped-storage plant
[Google Maps] – Cortes-la Muela Powerplant

[source] So-called Plan Lievense, dating from 1981. With the massive Dutch multi-GW wind power plans for the North Sea, to be realized before 2023, some form of energy storage is inevitable. One of the options is building dike structure that allow for fluctuating water levels of up to 40 meter.

Design consists of a closed ring-shaped dike of ca. 6 x 10 km. Water levels will very from 32 to 40 meter under the water level of the surrounding North Sea. Lake surface area: ca. 40 km2. Storage capacity is more than 20 GWh (value 5 million euro consumer end price of 25 cent/kWh), sufficient to produce 1,500 MW during at least 12 hours to the national grid. this plan could be profitable from 9 GW wind offshore wind power, expected after 2020..

[publicwiki.deltares.nl] – Energie-eiland in de Noordzee
[nl.wikipedia.org] – Plan Lievense

Plan Brouwersmeer near the coast of the Zeeland province, an implementation of the Plan Lievense.

[Google Maps] – Brouwersmeer

Planning stage – energy island near Belgian coast

[deepresource] – Pumped Hydro Storage

IFBattery – Instantaneous Recharging Batteries

An innovation from Perdue University, Laffayette, USA, could dramatically reduce the time needed to recharge a battery. E-vehicles could enter a charging station en route and recharge in a matter of minutes, like in the petrol car days and as such could significantly lower the acceptation threshold for e-vehicles. Gone would be the necessity of a nation-wide power plug infrastructure in front of every home to recharge the car at night.

Purdue scientist John Cushman presented his findings at the recent International Society for Porous Media 9th International Conference in Rotterdam, Netherlands.

Recharging consists of refilling a car with fluid electrolytes, not with electricity kWh’s:

The spent battery fluids or electrolyte could be collected and taken to a solar farm, wind turbine installation or hydroelectric plant for re-charging… Instead of refining petroleum, the refiners would reprocess spent electrolytes and instead of dispensing gas, the fueling stations would dispense a water and ethanol or methanol solution as fluid electrolytes to power vehicles… Other flow batteries exist, but [this is] the first to remove membranes which reduces costs and extends battery life… Membrane fouling can limit the number of recharge cycles and is a known contributor to many battery fires.

[purdue.edu] – ‘Instantly rechargeable’ battery could change the future of electric and hybrid automobiles

Daimler to Build Giant Battery Factory in Germany

Kamenz, East-Germany

Europe is a front-runner in implementing renewable energy sources, but is lagging behind with producing essential electricity storage. This is about to change with Daimler’s planned new giant battery in Kamenz, Germany. Purpose: build batteries for 10 new Daimler EV-models, on the road by 2022. The plant will be carbon neutral, with a combined heat-and-power plant and solar power. The initiative is aimed at competing with Tesla.

[media.daimler.com] – Daimler lays foundation for one of the biggest and most modern battery factories in the world
[oilprice.com] –
[rt.com] – Europe joins race for cheaper batteries with new gigafactory
[energy-saxony.net] – Daimler baut weitere Batteriefabrik fuer Elektrofahrzeuge in Kamenz

Cheap Electricity Storage for Households Underway

[source] “MyReserve”, 93% efficiency. 4,4 kWh; 6,6 kWh; 8,8 kWh; 11 kWh units

Solar installation company Solarwatt from Dresden/Germany has announced that it will offer batteries for substantially lower prices in the Summer 2017.
Price 4.4 kWh unit: 5.499 Euro

German price context:

1 kWh from the grid: 30 cent
1 kWh grid feed-in compensation: 12 cent
1 kWh cost from panel: 10 cent

Under these (very German) price conditions does it pay to install this Solarwatt battery.

This btw is still a far cry from the promised $100-200/kWh.

[spiegel.de] – Warum sich Solaranlagen in Privathaushalten demnächst rechnen könnten
[solarwatt.de] – Stromspeicher
[de.wikipedia.org] – Solarwatt

Ammonia (NH3) as Storage Medium for Renewable Energy

Energy from wind, solar and water in; ammonia (NH3) as energy storage medium out, eliminating carbon from the cycle. The idea is to convert renewable energy into liquid ammonia when electricity prices are low and burn it as fuel in gas-fired power plants when there is a shortage of renewable energy.

Liquid ammonia at 1 Bar in a 60,000 m3 tank contains more than 200 GWh of energy (annual production of 30 wind turbines).
Demonstration facility planned in Holland to be completed in five years.

[vattenfall.com] – Dutch gas plants made fossil free?
[resilience.org] – Is ammonia the holy grail for renewable energy storage?
[wikipedia.org] – Ammonia (NH3)
[protonventures.com] – Proton Ventures, What We Do
[energyoutlook] – Ammonia As An Alternative Fuel? (negative assessment)

RICAS-2020 – Compressed Air Storage

EU scientists are investigating if high pressure air, stored in empty mines and tunnels, could provide an alternative for pumped hydro storage in mountain basins. Currently pumped air storage efficiency merely reaches ca. 50%. The goal of the project is to substantially increase that efficiency to 70-80%. The trick is to not ignore the thermal losses accompanied with putting air under pressure, c.q. releasing it.

[ricas2020.eu] – RICAS Project (Research Infrastructure Compressed Air Storage)
[wikipedia.org] – Compressed air energy storage
[cleantechnica.com] – EU Proposes Air As World’s Next Big Energy Storage Option
[sintef.no] – Air could be the world’s next battery
[trouw.nl] – Energieopslag in Bergen: een heel luchtige zaak
[ethz.ch] – Pilot in Switzerland; expected efficiency 75%.

Storage Breakthrough – $100/kWh has been achieved

Cheap storage to counter the intermittent supply of renewable electricity is the missing link en route towards the desired renewable energy base of the future, but that problem could now have been solved. Technology has developed so rapidly in recent years that cost of electricity storage has been brought down from $1000 to $100 per kWh.

City College NY has improved an old concept of mangandioxide-zinc batteries. Result: 6000 charge-cycles for less than $100/kwh.
Price storage of a single kWh: 1.67 dollar cent or say 8 cent per day per 5 kWh/day household. Peanuts.
Can also be used for cars: 40 kWh battery for $4000. Bye-bye gasoline.

Mangan-Oxid is abundant and non-toxic.
This NYC startup is going to produce the batteries first:

[urbanelectricpower.com]

[sciencedaily.com] – Sustainable, high energy density battery created
[nature.com] – Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries
[pnnl.gov] – Unexpected discovery leads to a better battery
[newatlas.com] – Power dense zinc-manganese power unit as cheap as a car battery
[wikipedia.org] – Manganese
[wikipedia.org] – Zinc
[trouw.nl] – Batterijdoorbraak: magische grens van 100 dollar is geslecht

Power to Gas

Storage of intermittent renewable energy is one of the core challenges that needs to be addressed to make the energy transition away from fossil fuel work. Pumped hydro is a reliable method, but this requires the presence of mountains and valleys and these are in overpopulated Europe in short supply. Another approach is the conversion of renewable electricity into gas, like H2, CH4, CO, etc. “Power-to-gas”.

Read more…

New Renewable Power Storage Method

storage-concrete-balls

Tests have been completed in the German Bodensee with a 20 ton, 3 meter concrete hollow sphere, sunk to the bottom of the lake. When water flows into the sphere, electricity can be generated. Alternatively, wind power can be used to empty the sphere again and as such (virtually) load the battery again. Future dimensions are thought to be 20 meter or lager (4,200 m3 volume). Assuming 100 meter of water above the sphere, that’s an amount of storage energy 1167 kWh or 86 Tesla Powerwall 2.

[spiegel.de] – Riesige Betonkugel speichert Energie

storage-concrete-balls2

Hamburg Considers Large Scale Storage of Heat

hamburgsoilheatexchanger

The key challenge with setting up a 100% renewable energy base is providing storage facilities. This applies to intermittent supply of electricity via wind and PV-solar, that needs to be matched with equally intermittent demand. The same consideration applies to space heating, the demand of which currently is mostly covered via fossil fuel. If you want to phase out fossil fuel for space heating, you will need to get serious about seasonal storage of heat: trapping solar heat in the summer, use it to heat large bodies of soil and withdraw these Joules in the Winter.

The city of Hamburg is considering a large scale heat storage that should cover 25% of Hamburgs needs. For the moment the buffer would be charged with industrial waste heat from fossil sources. But once realized the storage bugger could be fed with thermal solar as well.

Estimated cost: 4 cent/kwh, half of the price customers currently pay for district heating.

[energypost.eu] – Hamburg considers innovative heat storage scheme

MERITS Seasonal Heat Storage Breakthrough

Everybody prefers to talk about wind and PV-solar when it comes to renewable energy. The reality is that electricity is only a relatively small part of the energy consumption of private households. Take the Netherlands:

[clo.nl] – Energieverbruik door huishoudens, 1990-2013

Natural gas: 3/4 (space heating, cooking, bath)
Electricity: 1/4 (lights, TV, fridge, freezer, router, etc)

In other words: the greater challenge is to replace fossil fuel for heating purposes with renewable sources. Two major renewable sources for heating are
1) thermal solar
2) geothermal

The problem with thermal solar is the mismatch between supply and demand. You need heat in the Winter but the sun shines mostly in the Summer. Apparently a major breakthrough has been achieved in storing large amounts of solar heat in molten salts.

[merits.eu] – Developing a compact rechargable heat battery
[merits.eu] – Merits in slides
[wikipedia.org] – Thermal energy storage

Breakthrough Battery Technology: $65/kWh

sb-pb-battery

US researchers at the Massachusetts Institute of Technology have developed a liquid metal battery that could fulfil that role. Such a battery would lower the overall costs of energy storage, and have the advantages that they are mechanically simple and don’t take up much space… Indeed, the team’s experiments with this novel storage system carried out at 450°C displayed a current density of 275mA/cm2, with a cycling efficiency of 98% on charging and 73% ‘round-trip’ energy efficiency… The team’s experiments completely charging and discharging their battery over 450 cycles over 75 days suggests that the battery will still have 85% of its initial storage capacity after 10 years active service… The team adds that at today’s prices, the electrode materials costs are approximately $65/kWh.

Editor: is this is true and no serious (environmental) disadvantages come with this technology, this could mean the final breakthrough for wind and solar.

[rsc.org] – Molten metal batteries set to store grid power

[deepresource] – Tesla Storage for $350/kWh
[deepresource] – 160$/kwh Storage in 2016
[deepresource] – Storage For Less Than $100/kWh

Belgian Offshore Storage Solution

Die Energie-Insel aus der Luft.

Die Energie-Insel aus der Luft.

Vom Strand aus gesehenView from the Belgian beach

The idea is not new: build a circular dike in the sea and pump water out of it with energy from wind turbines for storage purposes if there is no actual demand for energy, like during the night. Let water flow back in again, propelling turbines to generate energy on the moment that you need it.

In 1981 the Dutch engineer Lievense presented the plan for this type of storage, but that was 1981 (when we heard him present his plans at our university) and now is 2015, where the energy problem has become acute. Decision for a go ahead: this summer.

Key data:

Discharge capacity: 500 MW for four hours
Max. difference water levels: 30 meter

In Europe, the on-land hydro storage capacity has been largely exhausted. Exception: Norway and Iceland.

[spiegel.de] – Belgien plant “iLand” in der Nordsee
[welt.de] – Wo unser Strom in Zukunft herkommen wird
[wikipedia.org] – Grid energy storage

plan-lievense[source] Original Plan Lievense

lievenseLuc Lievense

Read more…

Samsung 8 kWh Storage

samsungess-e1434471927472

Residential energy storage systems of 8.0 kWh and 5.5 kWh were recently introduced by Samsung SDI at Intersolar Europe 2015 in Munich, Germany. The two new systems were designed to work well with electricity generated by solar PV power, and they use lithium-ion batteries. There is a product warranty for 5 years and a performance guarantee for 10.

Price?

[cleantechnica.com]

Now You’re Talking: Tesla Storage for $350/kWh

teslaTesla storage home wall (sort of king-size Apple computer mouse; we reluctantly picked a photo with a car to give you an idea of the size)

Tesla’s selling price to installers is $3500 for 10kWh and $3000 for 7kWh. (Price excludes inverter and installation.) Deliveries begin in late Summer.

[mashable.com] – The killer feature of Tesla’s Powerwall is the price
[cleantechnica.com] – Tesla’s Home Battery Offering In Context
[teslamotors.com] – Energy Storage for a Sustainable Home
[spiegel.de] – Batterie für Selbstversorger

Energy equivalent is one liter gasoline

JuiceBox 8.6 kWh Storage

juicebox-advanced-residential-energy-storage-system

The US company JuiceBoxSolar brought a 8.6 kWh energy storage system to the market, specifically designed to support a domestic solar system. This kind of storage provides for the missing link between electricity production during the day and electricity consumption at night, when people return home from work. The system is advertised as maintenance free for a minimum of ten years and can be installed outdoors, against a wall.

Editor: the price is still a mystery and for that reason probably high.

[juiceboxsolar.com]
[data sheet]

160$/kwh Storage in 2016

In October last year we reported that storage of less than 100$/kwh was in the cards, now EOS announces that a 160$/kwh milestone could be reached next year, for large scale storage.

In comparison, your average $135 fully charged car battery has a capacity of something like 0.6 kwh, that’s $225/kwh. Energy efficiency battery storage: better than 90%.

[cleantechnica.com] – Eos Energy Storage’s Aurora Battery System Commercially Available In 2016, At $160/kWh

Eos_Aurora_clean-pic_screen4000
EOS Aurora 1000 | 4000 [source]

Compressed Air Energy Storage

Storing electricity safely, efficiently and in large amounts that is one of the greatest challenges for the power supply of the future. RWE Power, General Electric, Züblin and DLR are facing this task in the ADELE project.

Located in McIntosh, Ala., PowerSouth’s McIntosh Power Plant currently includes four natural-gas fired combustion turbines and the United States’ only Compressed Air Energy Storage (CAES) unit. The Plant’s first two natural-gas units went commercial in 1998, with a capacity of 240 megawatts. The second set of two natural-gas units went commercial in 2010, with a capacity of 360 megawatts. The CAES facility has a capacity of 110 megawatts. Total plant capacity is 710 megawatts — enough electricity to power approximately 710,000 homes. The natural-gas fired, simple-cycle units are classified as peaking units. They are designed to provide additional electricity to the PowerSouth system during “peak” usage periods — usually short periods of time during early morning or evening hours. The McIntosh Plant’s turbines and generators offer simple-cycle technology with short start-up time, making them suitable for continuous, peaking and emergency operation.

[wikipedia.org] – Compressed air energy storage
[caes.pnnl.gov] – Compressed Air Energy Storage

The principle: demonstration of a small compressed air battery. The bottle stores compressed air. The high speed air from the bottle moves a turbine connected to a DC motor who acts as a dynamo. This turbine-motor comes from a home hairdryer.

Younicos Storage

Younicos combines storage and software, resulting in very fast response times to changes in supply and demand.

[younicos.com]

Read more…

Post Navigation