Observing the world of renewable energy and sustainable living

Archive for the category “Netherlands”


What do you do with hydrogen, obtained from electrolysis? You can store it under high pressure or cool and liquefy it.

Alternatively, you can store it in the form of borohydride powder (NaBH4).
Energy density NaBH4: 1 kg contains 9 kWh

We reported about this very promising development earlier:

[deepresource] – NaBH4 – The Vice-Admiral Has a Message for Dutch Parliament
[deepresource] – H2Fuel – Hydrogen Powder NaBH4
[deepresource] – Regeneration of Spent NaBH4 From Renewable Electricity
[deepresource] – Production of NaBH4
[deepresource] – Clipper Stad Amsterdam & Hydrogen Powertrain

Meanwhile, H2-Fuel developments proceed:

[] – Update H2-Fuel November 2019 (Dutch)

Circular process:

Inpakproces (storage process)
Uitpakproces (release process)

Status storage proces:

• 5kW installation working for 21 months continuously, stable and with good performance
• Scaling towards 125kW
• Successful tests to replace HCL catalyst

Next steps:

• Build application in ship (via H2SHIPS project)
• Build application in bus
• Evaluate scenario’s with circular process (storage and release process) in ship. A ship that merely needs to refuel water to sail!

Status release process:

• Theoretical modelling and improvement process by several universities (TU Delft/TU Eindhoven/TU Gent)
• On a laboratory scale the process works

Next steps:

• Building small scale power station
• Baseline measurement energy efficiency
• Improve catalyst to increase energy efficiency
• Design test power station for industrial sites
• Find 2 test locations for industrial applications

Dutch Government Unfortunately Allows Canadian Firm to Start Fracking

Frackers will soon be injecting benzene and formaldehyde into the soil under high pressure. A part of it comes back and then counts as chemical waste. Even radioactive substances are added. Plus the greenhouse gas methane. Frackers also use a lot of water. I thought we were enjoying a sustainable energy transition together?

[] – Vermilion legt tijdbom onder De Langstraat
[] – De voor en nadelen van fracking en onconventioneel aardgas
[] – EBN: grootste schaliegasactivist van Nederland
[] – Hydraulic fracturing

Sewage as the Heat-pump Cold Side


Homes can be heated much more energy efficient with a heat pump than a conventional CV-with-boiler. Heat-pumps pump heat from a source to the target, your home. That source can for instance be air, or a pipe-grid buried in your garden. The trouble is, in the winter the air is cold, where the heat pump works best with the smallest possible temperature difference between source and target (21 C). The magic formula in the world of heat pumps (and your fridge is one of them) is:


Q is the heat we want to pump in your living room, W is the “Work” (preferably emission-free renewable electricity) we need to get the heating job done.

The relationship between the lower temperature of the source TL and the higher temperature of your living room TH is:


Under good conditions COP values of 4 or higher can be achieved. A COP-value of 4 means that with a heat pump and 1 unit of electricity we can achieve the same heating result as with 4 units of electricity in a electric heater. “Good conditions” means: a as high as possible source temperature. Air in the winter can be 0 C or lower. The soil in temperate climate like NW-Europe is something like 10 C, which is already much better. The point is though that soil is a bad heat conductor, meaning that as you gradually extract heat from the soil, the temperature of the soil decreases, as the surrounding soil is not able to keep the temperature constant fast enough.

That is where the sewage idea comes in. Temperature sewage water: 10-15 C, which is high. And it flows! Meaning, there is a constant supply of (smelly) water of 10-15 C!. Brussels is now contemplating to use the sewage fluids as a heat source. In Raalte in the Netherlands they already have a swimming pool heating system working based on this idea. In Brussels and Raalte they have smelled a rat… err smelled the coffee!

[] – Can we heat buildings without burning fossil fuels?
[] – Sewage water heating pool water
[] – Heat pump and refrigeration cycle

The Raalte swimming pool has been heated with sewage heat since 2013. From the nearby sewage treatment plant, ‘clean’ sewage water with a temperature of 10-15 degrees Celsius is pumped towards the pool. Heat exchangers are installed in the pipes. The pool water is then brought up to temperature with a heat pump.

Sewage in Dutch is “riool”. Hence the word “riothermal”, prompting associations with the Copacobana rather than your toilet. In 2018 three Dutch swimming pools are heated this way (COP 5-6) and claim to be the world’s first. Additionally in Goes they are building a system for 60 homes:

The Goes project. Other pilot schemes exist in Amstetten in Austria, Glasgow in Scotland, and Rotterdam in the Netherlands.

Hydrogen Delta

Halleluja videos of the Hydrogen Delta Day, 22 October, 2019 in Vlissingen (“Flushing”) in the Zeeland province of the Netherlands. The Netherlands produces ca. 900,000 ton hydrogen per year from fossil sources, half of which is consumed by industry in Zeeland. Eventually all Dutch hydrogen needs to be produced renewable, with the electricity coming from several GW large nearby offshore wind farms, to be built in this decade and beyond, with the first currently under construction, the Borssele 1.5 GW offshore wind farm.

[] – The Hydrogen Delta Day
[] – Corporations and government want 1 GW electrolyzer by 2030
[deepresource] – The Emerging Dutch Hydrogen Economy

Read more…

Inventum – Ecolution Solo

It’s difficult to equip an older home with a heat pump, that operates at lower temperatures and as a consequence needs floor heating. A good compromise can be to combine a smaller heat pump in series with an existing boiler and let the heat pump do the preheating. 35% energy reduction is claimed by Inventum.

[] – Warmtepompen
[] – Inventum Ecolution Solo KA01697
[] – Mini-warmtepomp mikt op massa

The input is air from within the home, output hot water in the radiator.

Real review: heat pump installed in the attic. 50% less gas in November, minus the additional electricity cost. The 35% claimed by Inventum could be true.

Dutch Renewable Energy Potential

Restrained scenario

Dutch renewable energy potential according two different scenarios.
Average Dutch electricity consumption: 13 GW.
Total installed capacity 2018: 30 GW

Maximal scenario

[] – Het potentieel van groene waterstof voor de gebouwde omgeving
[] – Feiten over energie en energiegebruik in nederland

Installed capacity 2015 and expectations. By 2025 renewable electricity will have overtaken conventional sources.

Scale Model KLM Flying-V

The Technical University of Delft in the Netherlands is working on a scale model of a V-shaped plane, that promises to reduce fuel cost with 20%. The project is sponsored by KLM. The model is expected to be ready for real test flights later this year.

[] – Flying-V Energiezuinig vliegen op de lange afstanden
[] – Flying-V jet

DELFT – TU Delft preparation of model Flying V. FOTO GUUS SCHOONEWILLE

First Monopiles Installed at Borssele Offshore Wind Project

The Borssele I-V 1.5GW offshore wind project is currently the largest in the world (but not for long). This is Ørsted’s first project in the Dutch part of the North Sea. The first and largest monopile of a weight of 1,188 ton and a length of 76 meter has been rammed into the seabed. Borssele I-II is expected to be operational later this year and will produce sufficient electricity for 1 out of 8 million Dutch households. The 94 monopiles in total will have been installed by April, after which the towers and Siemens-Gamesa turbines can be installed in a couple of months more.

[] – Eerste funderingen van windpark Borssele zijn gezet
[deepresource] – Making Your Mark in Borssele, Offshore Wind Project


Metal Fuel Gets a Subsidy Boost

A club a students of the Technical University of Eindhoven in the Netherlands, called TeamSolid, is working on a new energy storage system, based on a fuel cycle: {iron powder –> burning, producing heat for a Stirling engine –> producing iron rust powder –> reduction to iron powder, which costs energy}:

TeamSolid managed to get a 20 kW system to work and now are provided with the opportunity to scale up to 100 kW, thanks to 1 million subsidy from the province of North-Brabant. Interested corporations foot the remaining 1.8 million euro. The 100 kW installation will bu utilized by the Bavaria-brewery. In order to brew beer, Bavaria needs steam and electricity, that are currently both provided by burning natural gas. The goal is to burn iron powder rather than natural gas in order to avoid CO2-emissions. Many third interested companies are watching from the sideline to see if something could be in it for them.

[] – Miljoen euro subsidie voor ‘Metal Power’ TU/e-studenten
[] – Team Solid official project site
[deepresource] – Metalot Campus
[deepresource] – Nyrstar – The Next Royal Dutch Shell?

Read more…

Upgrading the Aeolus

Van Oord Installation Walney Extension Wind Farm

[] – Walney Wind Farm

Making Your Mark in Borssele, the Largest Offshore Wind Project in the World

Boskalis-Westminster N.V. hallelujah-videos concerning the Borssele 1.5GW offshore wind project in the Netherlands.

[] – Boskalis
[] – Borssele Windpark

New Aeolus Video

This latest video shows the Aeolus with a new, larger crane, enabling the ship to handle the largest wind turbines to date.

The Aeolus is probably the most advanced offshore wind-turbine installation ship in the world today. German-built, Dutch owned, this ship is able to install a monopile for the latest 10-12 MW wind turbines within 24 hours. If we would add two days for the installation of the tower, nacelle and blades and assume that a simple, much cheaper barge would deliver all these parts at sea, eliminating the need for the expensive Aeolus to fetch these part from the port itself, we arrive at a hypothetical installation capacity of 100 MW per month or 1.2 GW per year. The Netherlands consumes on average 13 GW electricity 24/7/365. That is 11 years installation time. However, even these large turbines have a capacity factor of 60%, so 13 GW real installation (ignoring storage issues), with 6 MW per 10 MW nameplate turbine or 60 MW/month of 720 MW/year, would require 18 years installation time.

Think about it, a single ship is (in theory) able to replace the entire fossil fuel-based power production capacity of a country like the Netherlands, with a population of 17 million, that has the highest electricity consumption per capita in the entire EU, in 18 years time. As a rule of thumb, multiply this with a factor of 2 in order to create a truly renewable energy base, powering everything, including transport and space heating, with heat pumps.

One ship, the Netherlands, 36 years.

Europe has many of the jackup ships.

[deepresource] – Huisman Installation Aeolus 1600 Ton Crane
[deepresource] – Crane Aeolus Jack-Up Vessel Being Upgraded
[deepresource] – The Giants of a New Energy Age
[deepresource] – The Enormous Energy Potential of the North Sea

Read more…

Lagerwey L100 – Inside an Efficient Large Wind Turbine

Lagerwey is a grass-roots Dutch wind turbine and tower manufacturer that produces the entire wind turbine chain itself and is around since 1979. Lagerwey has a “special relationship” with Russia in order to get the wind energy revolution off the ground in Russia too by licensing Lagerwey technology to Russian companies.

[] – Lagerwey company site
[] – Lagerwey
[] – Lagerwey trains Russian wind energy specialists
[] – Russia formally joins Paris climate agreement
[] – Lagerwey and NovaWind launch joint venture Red Wind
[] – Russian wind industry boosted by joint venture between ROSATOM and Lagerwey

Largest Windturbine in the World Operational in Rotterdam

Haliade-X, 12 MW, French-built, General Electric. Generates sufficient electricity for a town of 16,000 homes. Will go in production in 2021 after completion of the test series in Rotterdam Harbor, in the Netherlands.

[] – Haliade-X 12 MW offshore wind turbine platform
[] – GE Unveils Operation Haliade-X 12 MW
[Google Maps] – Location Haliade-X
[] – Openingsceremonie op toekomstige locatie voor prototype Haliade-X 12 MW in Rotterdam

RELEASE – Renewable Storage Initiatives in the Netherlands

The Institute for Renewable Energy Storage of the Technical University of Eindhoven in the Netherlands has received Reversible Large-scale Energy Storage (RELEASE)

Researchers Kitty Nijmeijer, Emiel Hensen and Thijs de Groot of the Department of Chemical Engineering and Chemistry are part of the interdisciplinary consortium RELEASE (Reversible Large-Scale Energy Storage), which receives over € 10 million from the Dutch Research Council (NWO) for research into large-scale energy storage. NWO is investing € 39 million in five large, interdisciplinary research consortia within the Crossover programme, with the aim of helping to meet various social and economic challenges.

Improving the performance and reducing the cost of large-scale energy storage is vital for the transition to sustainable energy. RELEASE will work on new technological possibilities for the short (2030) and long term (2050). The project will focus on hydrogen and hydrocarbon production from CO2 and flow batteries.

[] – Millions for large-scale energy storage research
[] – Our Energy Challenge, Storage and Conversion
[] – Five large interdisciplinary consortia strengthen knowledge and innovation in the Netherlands

The Dutch Energy Transition – Faster Than You Would Expect

Total Dutch average electricity consumption 24/7/365: 13 GW.
Total installed power generation base: 29 GW.
The sport is to replace all remaining fossil capacity with renewable.

The price of a renewable kWh has come down considerably between 2010-2018 and further price erosion is to be expected.

[] – Duurzame energie komt sneller dan verwacht

Read more…

First Time 11 MW Turbines For Subsidy-Free Offshore Windpark

The Netherlands have barely begun to build the largest offshore wind park in the world, Borssele I-V (1.5 GW) and already the next 1.5 GW Mammoth is being planned: “Hollandse Kust Zuid 1 & 2” (“Dutch Coast South 1 & 2”), expected to be operational in 2023, 22 km out of the coast near The Hague.

For the first time, 11 MW Siemens-Gamesa turbines will be installed, 140 of them eventually, to arrive at 1.5 GW.

Between 2025 and 2030 it will be a neck-and-neck race between the Netherlands and the UK about who is the largest installer of new offshore wind capacity, with ca. 2 GW/year each.

[] – Eerste subsidievrije windpark krijgt molens van liefst 11 MW
[] – Hollandse Kust Zuid 1&2 krijgt nieuwe 11 MW Siemens Gamesa turbines
[] – Nieuwste en grootste turbines voor windpark Vattenfall Hollandse Kust Zuid
[] – Windpark Hollandse Kust Zuid

[source] Europe dominates the offshore wind market, at a distance followed by China.

Kutten met Lubach – “Kernenergie Moet!”

Groningse grapjurk heeft een mening over kernenergie: doen! Argument: broeikasgassen zijn echt heel erg, maar met zon en wind gaat het allemaal niet snel genoeg, dus kernenergie. En verder zijn volgens de VPRO-clown de kernrampen uit het verleden natuurlijk geen kattepis, maar achteraf was het allemaal niet zo erg. To zo ver Arjen Lubach.

Heeft Lubach een punt? Eingelijk zegt hij niet zo veel dingen die pertinent onwaar zijn. Waar om het gaat is zijn de essentieele dingen die hij weglaat.

[] – Fukushima zes jaar later: de ramp is nog lang niet voorbij

Na de kernramp bleek een oppervlakte bijna zo groot als België radioactief besmet en al zes jaar lang zijn honderdduizenden mannen bezig met deze uitzinnige schoonmaakactie. Totale geschatte kosten van de ramp: 188 miljard dollar.

188 miljard dollar, dat zijn 188 GW aan offshore windturbines, terwijl Nederland gemiddeld 13 GW verbruikt. Deze verhoudingen zijn buiten alle proporties.

Arjen Lubach praat het aantal dodelijke slachtoffer klein en dat mag waar zijn. Er is echter nog een geheel ander aspect. Fukushima: 170.000 mensen geevacueerd en een gebied met straal van 20 km, decennia lang ontoegankelijk verklaard. Voor NL met een bevolkingsdichtheit van 412/km2 praat je dan al gauw over een half miljoen mensen die je decennia-lang ergens anders moet parkeren. Denk aan de complete provincie Groningen die ontruimt moet worden als het mis gaat met die armageddon-technologie.

Dan dat haast-argument; het is absoluut flauwe kul te veronderstellen dat een 1000 MW nucleaire centrale sneller gebouwd kan worden dan een 2000 MW offshore wind park (je hebt dubbele capaciteit nodig vanwege de variabiliteit van de wind). In 2018 werd een tender uitgeschreven voor het offshore windpark Hollandse Kust I+II (1500 MW). In 2023 zal het klaar zijn. Dat is in vijf jaar tijd. Een kerncentrale heeft officieel minstens 10 jaar nodig, in de praktijk veel langer.

Het Technisch Weekblad, geschreven door mensen die hun studie WEL hebben afgemaakt, beste Arjen, zeggen dat centrales in het Westen domweg te duur zijn. Let wel, dat zijn ze al als ze nog niet ontploft zijn:

[] – Westerse kerncentrales te duur om te bouwen

Nieuwe Europese en Amerikaanse kerncentrales zijn te duur, ver achter op het bouwschema, of de bouw wordt simpelweg geschrapt. Ze kunnen daarom niet op een betaalbare wijze bijdragen aan het terugdringen van CO2-emisies. Het IEA luidt ook de noodklok over de uitstervende kerncentrales in het westen. Waarom lukt het in China wel om dezelfde reactoren voor de helft van de kosten online te brengen?

Hier de werkelijkheid over de echte bouwtijd:

Nieuwe kerncentrales in Amerika en Europa produceren geen elektriciteit, maar migrainedossiers. De Virgil C. Summer-centrale in South Carolina werd in 2018 geschrapt nadat de bouwkosten waren opgelopen van € 7,5 miljard naar € 11,5 miljard. Het is nu een nutteloos object dat € 5 miljard heeft gekost. De Vogtle-centrale in de staat Georgia ligt zes jaar achter op schema terwijl de kosten zijn uitgedijd van € 10 miljard naar € 20,5 miljard. Frankrijk bouwt al sinds 2007 aan de Flamanville-centrale die € 3,3 miljard zou kosten, maar nu begroot wordt op € 10,5 miljard. Olkiluoto-3 in Finland, ook begroot op € 3,3 miljard, zou in 2009 klaar zijn. Men hoopt nu de centrale begin 2020 op te starten. De meest recente schatting van de kosten (uit 2012!) is € 8,5 miljard.

De Nederlandse club Urgenda heeft becijfert dat als puntje bij paaltje komt, Nederland in staat is om de gehele transitie uit te voeren in 10 jaar tijd:

[deepresource] – Netherlands Sustainable by 2030

Als de eerste nederlandse kerncentrale zou worden opgeleverd is de klus al geklaard.

Maar dan is er nog een geheel ander argument: de eindigheid van Uranium voorraden. Als in een gedachtenexperiment de hele wereld morgen zou overstappen op Uranium, dan zouden alle voorraden binnen 14 jaar op zijn. Er zijn wel work-arounds, maar dan praat je over snelle kweek-reaktoren en een plutonium-economie. Zeggen begrippen als “Kalkar”, “Sellafield” en “Cap La-Hague” je nog iets, Arjen, grote denker?

Jammer, Arjen, leuk geprobeerd, maar zeg maar tegen je vriendjes bij de VVD dat dit een gepasseerd station is. Gaat gewoon niet gebeuren.

[] – Peak Uranium
[] – VVD: snel kerncentrales bouwen om klimaatdoel te halen
[] – Fukushima disaster cleanup
[deepresource] – Netherlands Sustainable by 2030
[] – Arjen Lubach

Read more…

Hybrid Solar Collectors & Heat Pump

(Dutch language video)

In our view, photovoltaic thermal hybrid solar collectors (PVT) are one of the most underestimated renewable energy harvesting solutions in places where space is rare and expensive. Think countries like the Netherlands. In a solar panel, a typical 20% of the solar radiation is transformed into electricity. In an isolated black flat plate solar thermal collector, the absorption rate is near 100%. In oractive typical values are: 250 kW electricity plus 400 kW heat, and operating with 80% overall conversion efficiency. In a hybrid PVT-panel/collector the photo-electric and thermal functions are combined in one. In the examples presented here, the thermal collector functions as the source for a heat pump. This is an alternative to more conventional solutions as extracting heat from a much colder source like 10 Celsius soil. The roof rather than the garden, so to speak.

In the Netherlands it is no longer allowed by law to build new homes with a natural gas connection; hence tens of thousands of new homes every year come with a heat pump installed. The battle for the most advantageous heat source for the heat pump has been ignited: soil, air or PVT-roof. May the best solution win.

[] – Photovoltaic thermal hybrid solar collector
[Google Maps] – Waalre
[] – Volthera hybrid solar collector
[] – Warmtepomppaneel
[] – Triple Solar PVT Heat Pump Panel
[] – PVT: het dak als warmtepompbron

A similar example in Schildwolde, Groningen

Post Navigation