Observing the world of renewable energy and sustainable living

Archive for the category “Netherlands”

Developments in Offshore Wind Jack-Up Market

New offshore wind installation mega-vessel “Voltaire”, able to lift 3,000 ton, ordered by Jan de Nul, Belgium, scheduled to become operational in 2022.

According to Bloomberg there are merely a dozen ships in the world that can install a large offshore wind turbine, which is understandable with a list price of ca. 300 million euro per ship. Currently almost all these vessels are operating in European waters. Europe is uniquely blessed with ca. 600,000 km2 shallow water with high wind speeds (North Sea, Baltic and Irish Sea, together an area larger than France) that can be utilized for offshore wind, in principle enough to supply the entire EU (300 GW on average), three-five times over.

[deepresource] – The Giants of a New Energy Age
[deepresource] – European Wind Energy Potential
[deepresource] – The Enormous Energy Potential of the North Sea
[deepresource] – Unleashing Europe’s Offshore Wind Potential 2030

Principle offshore wind installation vessel illustrated. About one turbine foundation can be realized per day or 4 per week, if fetching a new batch in port is included. The next generation is 10 MW, 13 MW is in the pipeline. Take the Netherlands: 13 GW average electricity consumption. That could be covered by 1,000 wind turbines, or 2,000 rather, if a conservative capacity factor of 50% for large turbines is taken into account. That’s 500 weeks or 10 years installation time. So, a single ship can realize the electricity transition of a country like Holland in a decade. For 100% renewable primary energy we need to calculate twice the amount of electricity consumed today, that’s only two decades! Productivity could be significantly enhanced if a simple cheap barge and tugboat is used to fetch a new batch of 4-6 monopiles from the harbor in Rotterdam, Vlissingen or Eemshaven, while the expensive installation vessel Aeolus merrily hammers away full-time. In that case 4,000 13 MW turbines could be installed in 4,000 days or 11 years. Note that in the mean time a lot of additional solar and onshore wind capacity has been, c.q. will be built. In conclusion: this single ship Aeolus is able to complete the energy transition of the Netherlands, the #17 in the global GDP ranking before 2030, not 2050 as the EU demands. Most likely developing sufficient storage capacity will be the real bottleneck, not electricity generation capacity.

1600 GW waiting to be raked in. EU average power consumption 300 GW. The old continent has no conventional fossil fuel reserves worth mentioning, fortunately Europe doesn’t need to. Armed with the Paris Climate Accords, Europe effectively dissed everybody else his fossil fuel reserves and is offering a viable alternative instead.

Some recent developments in the fields of offshore jack-up vessels:

[] – Offshore Wind Will Need Bigger Boats. Much Bigger Boats
[] – Vessels and platforms for the emerging wind market (pdf, 108p)
[] – DEME’s giant installation vessel ‘Orion’ launched in China
[] – A2SEA Invests in a New Jack-up Vessel
[] – Construction Progressing for Next Gen Vessel
[] – Offshore Vessels Demand for Offshore Wind Activities
[] – Jan de Nul orders new installation vessel
[] – Getting ready for the next generation of offshore wind projects
[] – Jan De Nul Orders Mega Jack-Up
[] – Massive hike by Wind Turbine Installation Vessel Market
[] – Japan joins offshore wind jack-up brigade
[] – Wind Tower Service Firm Plans to Build Jones Act Ships
[] – New design jack-up vessels to strengthen Ulstein’s offshore wind ambitions
[] – Flurry US offshore vessel deals prepares market for huge turbines

Hydrogen Out of Thin Air

“There is something in the air”… N2, O2, H2O, CO2, solar radiation. In principle all the ingredients are there to produce hydrogen H2, by using the solar light to split the moist H2O. That’s exactly what Japanese car company Toyota in Europe (TME) and DIFFER (Dutch Institute for Fundamental Energy Research) have agreed to research upon. The self-imposed restriction of using moist, naturally present in the air, is justified by pointing at the pure character of the water vapor, no bubbles, as well as applicability in those places where water is not available.

new solid photoelectrochemical cell that was able to first capture water from ambient air and then produce hydrogen under the influence of sunlight. This first prototype immediately took 60 to 70 percent of the amount of hydrogen you can make from liquid water. The system is a membrane reactor in which polymer electrolyte membranes, porous photoelectrodes and materials that absorb water are combined.

When Toyota approached DIFFER, the latter group was already working on hydrolysis of water vapor. They have meanwhile shown that the idea works, but only for the 5% UV light. The next challenge is to expand the amount of light that can be used for the desired conversion. Once that has been achieved, scaling is next.

Both DIFFER and Toyota are operating in a social climate that is receptive towards hydrogen as an energy carrier. Both Japan as well as the Netherlands aspire to operate a hydrogen economy. The end goal is (very) local hydrogen production (like your roof), for instance for mobility, Toyota’s interest. Your home as the replacement for the petrol station.


[] – DIFFER and Toyota partner to produce hydrogen from humid air
[] – Hydrogen Fuel from thin air
[] – Catalytic and Electrochemical Processes for Energy Application
[] – Hydrogen fuel from thin air
[] – Toyota and DIFFER explore innovative hydrogen production from humid air
[] – DIFFER (fusion & solar fuels)

Read more…

Energy in the Netherlands 2019

Infographic depicting the energy consumption in the Netherlands:

Sector PJ %
Industry 1132 46
Households 673 28
Transport 500 20
Agriculture 135 6
Total 2440 100

197 Megaton CO2-emissions

[] – Project site
[] – English

World’s Largest CO2 Storage Planned in the North Sea

The Netherlands is lagging behind in Europe with the implementation of renewable energy and as a consequence is lagging behind with reducing CO2-emissions, the country has committed itself to as a member of the EU. But there is an alternative to renewable energy sources to reduce emission and that is storing CO2 underground. The Harbors of Rotterdam, Amsterdam, Antwerp and others will build the world’s largest CO2-storage in the North Sea with a capacity of 10 million tons CO2 per year, pending an EU-subsidy. A ring-pipeline will be built around Rotterdam, that harbors the largest refineries in Europe, a major source of CO2, that will collect the CO2 and pump it under the North Sea in an empty gas field, 10 km out of the coast. Cost: 450 million euro. Environmental organisations would prefer to invest this money in renewable energy generation. Rotterdam harbor is responsible for 17% of all Dutch emissions.

[] – Havens van Rotterdam, Antwerpen en Vlissingen willen samen CO2 opslaan in de Noordzee
[] – CO2-opslag onder Noordzee technisch haalbaar en kosteneffectief
[] – Weltweit größter CO2-Speicher in der Nordsee geplant

[source] – Location “Porthos” storage near Rotterdam, in the North Sea

D66 Wants Solar Panel Fields in the IJsselmeer

The very EU-friendly Dutch left-liberal party Democrats-1966 (D66) proposes to install in the inland sea IJsselmeer, 4000 hectare worth of “solar islands”, enough to supply 1 million households with electricity (year-to-year, ignoring storage). That would amount to 4% of the IJsselmeer area. The Netherlands btw has 8 million households, so 32% of this relatively calm water body would suffice to cover the entire Dutch private electricity needs, assuming adequate efficient storage would be in place. The far less calm North Sea could easily provide the rest with wind turbines. A mixture of the solar and wind is desirable because it more or less compensates for seasonal fluctuations (solar in the summer and wind in the winter) and thus reduces the need for storage.

The timing of the launching of the plan could have something to do with the upcoming EU-elections, on the other hand, the Dutch are far behind with the implementation of the EU renewable energy policy and something has to be done. Money could for a large part come from private investors and pension funds, who will see this as a safe investment opportunity with predictable returns, exactly like every German farmer in the north could cash in from the wind energy Bonanza.

Other parties have not yet reacted.

[] – Als het aan D66 ligt, drijven er binnenkort zonnepaneeleilanden op het IJsselmeer
[] – Predictable objections from the “not-in-my-backyard” crowd
[] – D66

European Support for SolaRoad

The Dutch SolaRoad project now exists for 6 years and is gaining traction. So much so that the EU has injected ca. 5 million euro fresh money in the undertaking. It started with a bicycle lane in Krommenie, now more ambitious bus lanes are tackled. Experiences from the 2014-bicycle lane project in Krommenie has shown that 90 kWh/m2 per year can be harvested. Investment cost is near-astronomical, but that was to be expected for a pilot project. The challenge is now to bring down cost with a factor of ca. five in order to become viable through economy of scale by automating the production of concrete road-elements with solar cells and glass cover on top.

[] – Rolling Solar
[] – FAQ
[] – Interreg Rolling Solar
[] – Interreg V-project Rolling Solar van start
[] – Project site
[] – Nieuwe fase SolaRoad: ook autoweg gaat elektriciteit opwekken
[deepresource] – SolaRoad Update 2019
[deepresource] – SolaRoad Followup Project (2018)
[deepresource] – SolaRoad Project Still Alive (2017)
[deepresource] – SolaRoad Project Update (2016)
[deepresource] – SolaRoad Operational (2014)
[deepresource] – SolaRoad Finally Launched (2014)
[deepresource] – SolaRoad (2013)

Bicycle lane density in Europe. The Netherlands has 35,000 km bicycle lanes. Covered with solar panels, they could generate 15 TWh or nearly 1% of the current total Dutch electricity production. The potential for car solaroads is many times bigger.

[] – Bicycle lane data the Netherlands

Local television reports about a new solaroad near Haarlemmermeer, this time not for bicycles but a heavy duty bus lane.

For the skeptics, remember the price of pv-solar in the seventies? Anyone who had predicted that by 2020 solar panels would be installed on ever more private rooftops, would be declared insane. It happened anyway. Solaroad economy of scale needs to bring down prices with ca. a factor 5, in order to become economical. It is too early to say that it can’t be done.

Germany Missing Out on Power-to-Gas Revolution


German magazine der Spiegel despairs at the way with which Germany plays a significant role as a power-to-gas (P2G) innovator, yet fails to make a commercial success out of its endeavors.

One of the largest P2G installations is located in Pritzwalk, in East-Germany. Capacity 360 m3/hour. The installation can be seen as an opposition against an all-electric world. In the Pritzwalk Region 4 times more renewable electricity is produced as is consumed. P2G-installations could absorb this electricity and store it locally, either as H2, NH3 or CH4. In several parts in Germany, renewable wind electricity production is regularly switched off because of overproduction. P2G-installations would fit in wonderfully here.

Germany has a natural gas grid of 500,000 km that could transport renewable H2 or CH4. The trouble is that Germany isn’t pushing hard enough to roll out P2G on a large scale. Other countries do: the Netherlands, Denmark and Japan as prime examples. Official German justification: too low efficiency, 50%. According to der Spiegel installations with 75% do exist and there is room for even better numbers.

[] – Die verschleppte Energierevolution
[deepresource] – The Netherlands is Placing its Bets on the Hydrogen Economy

Organic Solar Cells

Most people associate solar cells with silicium. There are however other materials with which the photo-voltaic effect can be achieved, materials like conductive organic polymers or small organic molecules. The energy conversion process has some resemblance with natural photosynthesis. Maximum reported efficiency is ca. 15%.


The molecules used in organic solar cells are solution-processable at high throughput and are cheap, resulting in low production costs to fabricate a large volume. Combined with the flexibility of organic molecules, organic solar cells are potentially cost-effective for photovoltaic applications. Molecular engineering (e.g. changing the length and functional group of polymers) can change the band gap, allowing for electronic tunability. The optical absorption coefficient of organic molecules is high, so a large amount of light can be absorbed with a small amount of materials, usually on the order of hundreds of nanometers. The main disadvantages associated with organic photovoltaic cells are low efficiency, low stability and low strength compared to inorganic photovoltaic cells such as silicon solar cells.

Compared to silicon-based devices, polymer solar cells are lightweight (which is important for small autonomous sensors), potentially disposable and inexpensive to fabricate (sometimes using printed electronics), flexible, customizable on the molecular level and potentially have less adverse environmental impact. Polymer solar cells also have the potential to exhibit transparency, suggesting applications in windows, walls, flexible electronics, etc. An example device is shown in Fig. 1. The disadvantages of polymer solar cells are also serious: they offer about 1/3 of the efficiency of hard materials, and experience substantial photochemical degradation.

Polymer solar cells inefficiency and stability problems, combined with their promise of low costs[5] and increased efficiency made them a popular field in solar cell research. As of 2015, polymer solar cells were able to achieve over 10% efficiency via a tandem structure. In 2018, a record breaking efficiency for organic photovoltaics of 17.3% was reached via tandem structure.

[] – Molecular Materials and Nanosystems (M2N)
[] – Research group site
[] – Organic solar cell
[] – Zonnecelonderzoeker René Janssen wint Spinozapremie

English language presentation by prof. Rene Janssen of the Technological University of Eindhoven on the topic of organic solar cells:

Read more…

SolaRoad Update 2019

Portfolio of current SolaRoad projects

The road-dual purpose project SolaRoad in the Netherlands still exists. The idea is to combine the traditional transport function of the road with generating solar energy from panels on top of the road structure. The panel is the road, so to speak. It began with a bicycle path, now bus lanes are next. The glass cover layer has been replaced by synthetic material. The rationale behind this project is that in the Netherlands, space is rare and expensive. Hence the idea that dual use of road surface could be economical.

Dutch language video

[] – Project site
[] – Nieuwe fase SolaRoad: ook autoweg gaat elektriciteit opwekken
[deepresource] – SolaRoad Followup Project (2018)
[deepresource] – SolaRoad Project Still Alive (2017)
[deepresource] – SolaRoad Project Update (2016)
[deepresource] – SolaRoad Operational (2014)
[deepresource] – SolaRoad Finally Launched (2014)
[deepresource] – SolaRoad (2013)

Merger of Photo-Voltaics and Nano-Technology

Dutch language videos

25% of the cost of a conventional solar cell is in producing the required silicium. Most of that silicium is not used other than for providing mechanical stability, but has no electronic of photo-voltaic function. The idea is to get rid of 90% or more of the conventional amount of silicium used in a solar cell and aim at “printing” a super-thin layer of silicium onto some cheap substratum. Think of printing a newspaper. Five of those printing machines, operating for 10 years on end, would suffice to provide the entire world with low-cost solar energy.

[] – Goedkopere zonnecellen door nanotechnologie
[] – Nano zonnepanelen
[] – Nanodeeltjes kleuren zonnepanelen groen
[] – Nanodeeltjes vangen licht voor zonnecel

Fossil-Fuel Cars ‘Verboden’ in Amsterdam After 2030


The Amsterdam municipality has just announced the most radical climate measures of any city in the world. Per 2030 no fossil-fuel powered vehicle will be allowed to enter the city. Motivation: climate change, as well as the fact that inhabitants of Amsterdam live on average one year shorter because of the car emissions, the equivalent of ca. 10,000 murders per year in 700,000 city Amsterdam. Chicago has 24 homicides per 100,000 inhabitants per year or 175 on the scale of Amsterdam. Peanuts compared to fossil-fuel based ‘crime’.

[] – Amsterdam wil benzine- en dieselauto’s verbieden in 2030


2020: diesel cars older than 15 years are no longer allowed within the A10 ring road
2022: diesel buses no longer allowed in small ring-road S100
2025: no more gasoline mopeds everywhere in Amsterdam. Ring A10 ‘verboden’ for trucks, vans, taxi’s, buses, boating ferries, powered by fossil fuel
2030: no fossil fuel driven transportation whatsoever, anywhere in the city.

“On the Amsterdam canals”:

Aan de amsterdamse grachten
Heb ik heel mijn hart voor altijd verpand
Amsterdam vult mijn gedachten
Als de mooiste stad in ons land
Al die amsterdamse mensen
Al die lichtjes ‘s avonds laat op het plein
Niemand kan zich beter wensen
Dan een amsterdammer te zijn
Er staat een huis aan de gracht in oud amsterdam
Waar ik als jochie van acht bij grootmoeder kwam
Nu zit een vreemde meneer in ‘t kamertje voor
En ook die heerlijke zolder werd tot kantoor
Alleen de bomen, de bomen, hoog boven het verkeer
En over het water gaat er een bootje net als weleer
Aan de amsterdamse grachten
Heb ik heel mijn hart voor altijd verpand
Amsterdam vult mijn gedachten
Als de mooiste stad in ons land
Al die amsterdamse mensen
Al die lichtjes ‘s avonds laat op het plein
Niemand kan zich beter wensen
Dan een Amsterdammer te zijn
Al die amsterdamse mensen
Al die lichtjes ‘s avonds laat op het plein
Niemand kan zich beter wensen
Dan een Amsterdammer te zijn

Iron Powder as the Fuel of the Future?

Dutch language video

Solar and wind energy are meanwhile mature enough for prime time. The last missing link is energy storage to cope with intermittency of renewables. One solution is proposed by the Technical University of Eindhoven: use iron powder.

Fuel cycle: iron powder Fe –> burn it for heat-electricity generation –> Fe2O3 (iron rust) –> reduce the rust powder back to iron powder via electrolysis, using renewable energy.

In the video examples are shown of burning iron powder.

Reducing Energy Losses with Superconductivity

Dutch language video

Towards superconductivity at ambient temperature.

[] – Superconductivity
[] – Dave Blank

Renewable Energy is Going to Win on Price Alone

Dutch language video

No need to fence with debatable arguments like “fossil fuel depletion” or “climate change” or “clean energy” or “silent energy” in order to push renewable energy.
Prospects are that renewable energy is going to beat the competition on price alone.
Prof. Dave Blank argues that solar panels will be very cheap soon.

2018 – 50% Increase Installed Solar Power in the Netherlands

The Dutch national statistics office CBS says that in 2018, installed PV-solar power increased with 50%, or 1500 MW, increasing the total from 3000 to 4500 MW. This means that additional 460,000 households were covered with renewable energy, of a total of 7 million households.

[] – Vermogen zonnepanelen meer dan de helft toegenomen

Lagerwey Self-Climbing Crane on Display in Hamburg

One important factor in the overall cost of installation of a multiple megawatt wind-turbine, is that you have to bring a huge crane to the installation site. The innovation by the Dutch wind energy company Lagerwey is that they recognized that the wind tower under construction can itself function as a crane. All you need is a small crane, that can be transported by merely three trucks, mount it to the wind-tower-under-construction and bring parts of the tower, nacelle and eventually rotor blades to the top. Apparently the crane is now ready for prime time, witnessing the presentation of the crane at the Wind Energy Exhibition in Hamburg.

Lagerwey is selected by the Russian government as the preferred supplier to get wind development started in Russia, in cooperation with local industries and build 26 wind parks. Between 2018-2020, 610 MW is scheduled for installation.

[] – Lagerwey
[] – Wind Energy Hamburg
[] – Lagerwey at Hamburg Wind Expo

Read more…

Rembrandt Koppelaar and the Demise of Peak Oil

Rembrandt Koppelaar relaxed speech for the London Imperial College 2013. Gone is the alarmist tone.

[] – London Imperial College conference 2013.
[] – Personal site

Rembrandt Koppelaar was the chairman of Peak Oil Nederland and one of the driving forces behind spreading the “peak oil” idea in the Netherlands. In 2011 however, he published an article at, “The Future of Cheap Energy: Underground Coal Gasification“, stating that there was no fossil fuel shortage immanent and that UCG provided a way out. Now we know that UCG has a potential that dwarfs the possibilities of the fracking technology. Yet, in the light of climate change, UCG is a forbidden fruit and at best can provide a fossil fuel bridge into the renewable energy Nirvana.

[] – The Tesla Revolution: Why Big Oil is Losing the Energy War, 2017
[] – De ondergang van de olie-industrie in 64 stappen, 2017
(The demise of the oil industry in 64 steps)

[] – The site wend dead by the end of 2011, for good reason

[] – The Future of Cheap Energy: Underground Coal Gasification (2011)

Rembrandt Koppelaar in 2008 presenting “peak oil” on Dutch television (English subs). Koppelaar presenting the ASPO-2000, Richard Heinberg tale, he would later abandon (and so did Heinberg)

The romantic early days of the Dutch “peak oil” movement, located at a Amsterdam attic, ‘evangelizing’ a dramatic future that wouldn’t materialize. All dressed up and nowhere to go.

“Climate Change, Are We Doomed?” Public Discourse Heating Up in Holland

Ir. Guus Berkhout is niet zo maar iemand: afgestudeerd TU-Delft, lid Nederlandse Akademie van Wetenschappen, Officier in de Orde van Oranje-Nassau. O.a. gewerkt voor Shell. Berkhout heeft een open brief geschreven naar onze premier, zie hieronder. Daaronder ons kommentaar.

Geachte heer Rutte,

Geluk heeft te maken met geloof in de toekomst. Daarom kijken velen van mijn generatie met warme gevoelens terug naar de jaren ’60, waarin we veel minder welvaart hadden dan nu, maar waarin we vast geloofden dat alles beter zou worden. Bedrijfsinvesteringen lagen dan ook op een hoog niveau. Wat een verschil met nu, waarin onze welvaart weliswaar aanzienlijk hoger is dan toen, maar waarin het geloof in de toekomst ver te zoeken is. De huidige generatie wordt overladen met inktzwarte verhalen over de toekomst van de aarde. En ze krijgen al jaren te horen dat er in ons land honderden miljarden nodig zijn om te proberen catastrofale klimaatrampen te voorkomen. Het is volgens de klimaatbeweging vijf voor twaalf! Maar is dat wel zo?

Meneer Rutte, ik weet dat u met ons land graag voorop wilt lopen in het nemen van klimaatmaatregelen. Maar bent u er zich wel van bewust dat u vreselijk verkeerd bent voorgelicht? Realiseert u zich wel dat de werkelijkheid heel anders is dan het sombere beeld dat u nu al jaren voorgeschoteld krijgt? Weet u wel dat als we alles gaan uitvoeren wat er in uw kostbare klimaatplannen staat, de wereld slechts 0,00030C minder opwarmt? Dat getal is niet te meten!

In mijn brief wil ik u graag vijf aantoonbare onjuistheden in de argumenten van uw voorgenomen klimaatbeleid voorleggen.

De bewering dat 97% van de klimaatwetenschappers er van overtuigd is dat opwarming wordt veroorzaakt door de mens, is een gemanipuleerd getal. Van de 11.944 klimaatartikelen die werden geraadpleegd waren er 7930 die zich daar helemaal niet over uitlieten, slechts 41 artikelen die er echt in geloofden (slechts 41 van de 11.944!) en de resterende artikelen die min of meer twijfels hadden.

Klimaatverandering is een razend ingewikkeld proces en de wetenschap is er nog lang niet uit. Met name over de effecten van wolken en oceanen is nog weinig bekend. Bovendien, de nieuwste wetenschappelijke resultaten laten zien dat de invloed van CO2 op de temperatuur aanzienlijk kleiner is dan eerder geschat. Dat verklaart waarom tot nu toe de voorspellingen van klimaatmodellen altijd veel te hoog uitkwamen. De daaraan gekoppelde doemverhalen zijn dus niet op feiten maar op fictie gebaseerd.

De wereld van het klimaatonderzoek zit al jarenlang vol met bedenkelijk gedrag. Temperaturen uit vroegere warme perioden worden naar beneden bijgesteld, met als gevolg dat de hoge temperaturen van vandaag uniek lijken in de geschiedenis. Ook zien we regelmatig dat metingen van nu juist naar boven worden bijgesteld, met als gevolg dat metingen en modelresultaten goed overeen lijken te komen. Waarom deze misleidende acties in naam van de wetenschap?

Zon en wind kunnen bij lange na niet ons land voorzien van voldoende energie. Dat is geen zaak van technologie, maar van klimaat. Nederland heeft relatief weinig zon en wind, met ook nog eens een grote variatie in het aanbod. Bovendien, ons land is welvarend en gebruikt daardoor veel energie. We zullen ons land dus propvol moeten gaan zetten met windparken en zonneweiden. Als één van de dichtstbevolkte landen ter wereld is dat geen prettig vooruitzicht. Maar het is nog erger. We zullen ook nog een peperduur back-up systeem operationeel moeten houden om energie te leveren op dagen met weinig zon en wind.

De vaak genoemde optie van biomassa verbranden is aanwijsbaar veel slechter dan het verbranden van steenkool. Waterstof dan? Helaas, waterstof is een zeldzaam gas in de natuur. Dat gas moet de mens dus zelf maken en daarvoor is goedkope groene elektriciteit nodig. Maar die hebben we juist niet. Dus zitten we hier in een cirkelredenering.

In conclusie, meneer Rutte, de wetenschap weet het nog (lang) niet, de natuurlijke fenomenen zon + wind zullen in ons land nooit de benodigde hoeveelheid energie op een betrouwbare en betaalbare manier kunnen leveren, het verbranden van biomassa is erger dan het verbranden van steenkool en groene waterstof is pas toepasbaar als we de groene energie hebben om het te maken.

Maar wat u echt zorgen moet baren is dat de samenleving zienderogen polariseert. Steeds meer burgers willen Nederland niet zien veranderen in een jungle van gesubsidieerde windturbines en zonnepanelen, terwijl ze weten dat er geen meetbaar effect zal zijn op het klimaat. Ze beginnen nu ook te merken aan hun besteedbaar inkomen dat ze er wel veel armer van worden.

Daarom, tot slot meneer Rutte, mijn dringende advies aan u is om klimaatbeleid over een heel andere boeg te gooien. Het kan nu nog. Haal milieu- en klimaatbeleid uit elkaar, stop met de omvangrijke houtkap, temporiseer de energietransitie en geef de burger juiste informatie over de nationale kosten. De laatste wetenschappelijke stand van zaken laat zien dat we ruim de tijd hebben om met deskundige critici – die tot nu toe niet aan de klimaattafels van ja-knikkers mochten plaatsnemen – een alternatief voorstel op te stellen met als beginsel: aanpassen aan zaken waar de mens geen invloed op heeft (‘adaptatie’) en voorkomen van zaken waar de mens wél invloed op kan uitoefenen (‘mitigatie’). Is het bestuurlijk niet onverantwoord van uw kabinet om klimaatbeleid te gaan uitvoeren zonder kennis te hebben genomen van de nieuwe inzichten in het alternatieve voorstel?

[] – Open brief aan Mark Rutte
[] – Guus Berkhout: ‘Stop met doemdenken!’
[] – Guus Berkhout

Onze reaktie:

Read more…

De Offshore-Windindustrie

Dutch language video.

You’ve Got Mail!

The Aeolus is one of the most advanced offshore wind seejacking vessels in the world. It’s German-built, Dutch owned and operated by the Van Oord offshore enterprise.

The site offers the opportunity to follow global shipping. Just register and identify a ship of your choice and from then on you will receive email updates about events concerning that ship, like departure, arrival, berthing. Fortunately have not yet received mails reporting capsizing or sinking.

Yours faithfully has registered as well and chosen the Aeolus. The Aeolus is currently busy constructing the Belgian Norther offshore windfarm, see map below. The Aeolus picks up monopiles, towers, nacelles and rotor blades in Vlissingen, or Flushing as the town is known in Anglosphere (think “Flushing” and “Flushing Meadows tennis tournament“)

Belgian Norther windfarm

Here a summary of the most recent mails:

2019-04-21 21:52 – A new photo of AEOLUS has just been uploaded.
The photo shows the Aeolus, carrying 4 wind towers, nacelles and ditto rotor blades, leaving Flushing and heading for the Norther windpark in statu nascendi.

2019-04-21 15:30 – Departure: AEOLUS, Port: VLISSINGEN
2019-04-20 18:40 – Arrival: AEOLUS, Port: VLISSINGEN
2019-04-17 07:50 – Departure: AEOLUS, Port: VLISSING
2019-04-16 10:25 – Arrival: AEOLUS, Port: VLISSINGEN
2019-04-12 05:28 – Departure: AEOLUS, Port: VLISSINGEN
2019-04-09 20:51 – Arrival: AEOLUS, Port: VLISSINGEN
2019-04-05 13:49 – Departure: AEOLUS, Port: VLISSINGEN

etc., etc., etc.

OK, now let’s evaluate this data a little in a back-of-an-envelope calculation. The Aeolus is carrying 4 x 8.4 MW = 33.2 MW worth of nameplate wind power. Total Dutch (still largely fossil-based) power generation capacity = 29 GW. Average Dutch power consumption is 13 GW. How much time does it take for the Aeolus to install 29 GW of offshore windpower in order to complete the intended renewable energy transition?

From the list above you can conclude that the time for a full installation cycle can be 4, 5 or 7 days. Let’s say 6 days. Note that the installation of a complete wind turbines consists of 2 parts: 1. ramming a monopile into the sea bed and 2. placing the wind tower, nacelle and rotorblades on top of the monopile. In other words, it takes 2 x 6 = 12 days to install 4 wind turbines of 8.4 MW each or 33.2 MW in total.

In order to fully replace the total Dutch largely fossil-based power production of 29 GW, that would take 12 x 29,000/33.2 = 10,500 days or 29 years. Mind you, this is nameplate power and a capacity factor of 50% needs to be taken into account. That figure is however offset by the fact that in a couple of years 12-15 MW turbines will be installed, that can be handled by the same Aeolus. So we stick with 29 years. In other words, this single ship Aeolus alone is able to carry out the intended Dutch energy transition until 2050, the planned end date of said transition.

Note that this is a thought experiment. A lot of wind a solar capacity is planned to be installed onshore. On the other hand, as a rule of thumb, for a complete decarbonization of an average advanced western economy you need roughly 2 times the existing power generation capacity to keep the same standard of living, provided you replace conventional heating with heat pumps, implement thorough insulation, drive e-vehicles, etc.

The goal of the exercise is to point out that the renewable energy transition is a realistic enterprise and that the time frame of 2050 is doable.

[] – MarineTraffic
[] – Norther project site
[deepresource] – The Giants of a New Energy Age

Current position Aeolus at the time of writing this post.

Post Navigation