DeepResource

Observing the world of renewable energy and sustainable living

Catenaries For Every Highway?

Trolleybuses in Arnhem, the Netherlands. Could this be an intermediate solution for trucks as well? How about catenaries for highways only? The result would be that trucks only needs small batteries, “for the last miles”. During long distances travel the truck’s batteries could recharge via the catenary as well.

Advertisements

Renewable Energy Skeptic David MacKay

[wikipedia.org] – David J. C. MacKay
[withouthotair.com] – David MacKay official site
[inference.org.uk] – MacKay’s magnum opus “Sustainable Energy — without the hot air” (pdf, 12MB)

World-Record Pumped-Hydro Storage for Scotland?

An anonymous energy blogger named “Scottish Scientist” has posted a proposal for a giant pumped hydro storage facility in the Scottish Highlands with the potential to service most of Europe.

The numbers are massive:

Height dam: 300 meter
Width dam: 2,000 meter
Max. water elevation: 650 meter
Storage volume: 4.4 billion m3
Lake surface area: 40 km2
Energy content: 6,800 GWh or 283 GW days

The new storage facility would have “enough capacity to balance and back-up the intermittent renewable energy generators such as wind and solar power now in use for the whole of Europe!”

If one “limits” the area to a circle with a radius of 3,000 km and applies 800 kW transmission lines, a two-way storage efficiency of 79% could be achieved. However, if limited to the North Sea area, one-way losses could be reduced to 7%.

The proposed design would includ a “stepped-canal solution”, see picture above. The biggest cost would be building a large canal of 170 meter width, which would require to move more earth than in the Panama Canal project to allow for discharging water speeds of 10-11 m/s.

[scottishscientist] – World’s biggest-ever pumped-storage hydro-scheme, for Scotland?
[Google Maps] – Strathdearn
[savestrathdearn.com] – Save Strathdearn Valley (local resistance to be expected)
[euanmearns.com] – The Loch Ness Monster of Energy Storage

Airbus Vahana Autonomous E-Chopper-Plane Ready for Tests

The take-off is verticle and next the rotors tilt and become propellers. Project began early 2016. Eventually the autonomous chopper could be ordered on demand at a cost of 80% less than conventional helicopters.

[vahana.aero] – Welcome to Vahana
[twitter.com] –

The Vahana prototypes

Pipistrel Alpha Electro 2-Seater Plane

Electric airplane Pipistrel Alpha from Slovenia taking off.

17 kWh battery
Battery swap in minutes
300 meter climb per minute
Flight time one hour or longer
Optimized for flight training
Regenerative breaking: descending gives back 13% electricity
Recharge in less than one hour

World Primeur – Lagerwey Self-Climbing Crane in Action

As of now, large wind turbines can be assembled without the need for the usual external giant cranes. Instead the wind tower under construction can be used itself as a crane. this reduces the cost of wind turbines construction considerable. The Lagerwey L136-4.5MW costs 4,5 million Euro if constructed conventionally. By applying the self-climbing crane, cost reduction amounts to “several hundreds of thousands of euro” over the total cost of the wind turbine.

Additionally it is now possible to install a wind tower at hard-to-reach places, like mountains ridges or dikes. Old school cranes require a transportation effort of 150 truck trailers, the self-climbing crane merely three. Additionally it is no longer necessary to prepare the ground for the weight of large eternal cranes. Installation cost self-climbing cranes: 20% of the conventional installation cost.

[eemskrant.nl] – Wereldprimeur in de Eemshaven; Lagerwey zet zelf klimmende kraan in bij bouw windturbine
[zonnepanelenophetdak.nl] – Lagerwey ontwikkelt eerste zelfklimmende hijskraan

New Car Mileage and Emission Certification Test WLTP

[source]

Most people realize that official mileage data from car manufacturers are bogus. On average their figures are 42% better than reality as established by the International Council on Clean Transportation (ICCT). The ICCT was one of the clubs that helped unveiling the VW diesel scandal. One of the main reasons behind the discrepancy is the 1992 old test method called NEFZ (“Neuer Europäischer Fahrzyklus” or “New European Driving Cycle”).

Meanwhile there is new test method WLTP (“Worldwide Harmonized Light Vehicles Test Procedure”) that should shorten the distance between test and reality. WLTP is in force since September 1, 2017 for new cars

[spiegel.de] – Die Verbrauchslüge

World’s Largest Windturbine Nears Completion

Note water reservoir at the bottom of the tower.

Location: Gaildorf, Baden-Wuertenberg, Germany
Hub height: 178 m
Total height: 246 m
Investment: $81 M
Yearly return: $7.6 M
Annual production: 10.5 GWh
Payback time: 10.6 year

Apart from these impressive figures, the turbine has an innovation in the form of a “natural storage” facility. At the bottom of the tower, the turbine has a water reservoir of 40,000 m3 that communicates with a lake reservoir at 200 m lower altitude and connected with a 5 km long pipe. This reservoir represents a potential energy of 22.2 MWh or five hours worth of max. windturbine output. Energy efficiency: 80%.

[windpowerengineering.com] – Max Bögl Wind puts turbine on THE tallest tower
[de.wikipedia.org] – Naturstromspeicher Gaildorf
[naturspeicher.de] – The Naturstromspeicher – Our Big Green Battery
[wattisduurzaam.nl] – ’s Werelds hoogste windmolen staat in een piepklein stuwmeer

[source]

German Grid Still Reliable Despite Growing Renewable Energy

Despite a growing share of renewable energy in Germany, the grid remains as stable as ever: the average German has on average to endure a 11.5 minute/year blackout. Although grid stability will become an increasing challenge, for the moment everything is still fine.

[wattisduurzaam.nl] – Duitse stroomnet ondanks pieken windenergie superbetrouwbaar

New Utility Solar Price Record

[source]

A developer of a 300 MW solar park in Saudi-Arabia, Masdar/Abu Dhabi, is willing to accept the world record low price of 1.79 dollar cent/kWh. There were initially 27 applicants for this tender.

[wattisduurzaam.nl] – Nieuw record: Zonnestroom tegen 1,5 eurocent/kWh voor Saudi’s

Dutch Company Comes to the Rescue of US Offshore Wind

America has an archaic protectionist law called the Jones Act from 1920. The law says that transport between two American harbors can be done only with American-built ships with an American crew. This law effectively kills US offshore wind development before it gets a chance to be born, because America, as an offshore wind developing nation, doesn’t have the equipment to install offshore wind parks. Offshore wind technology is world-wide for more than 90% a North-West European affair, with installation vessels and crew all-European. European offshore installation in American waters violates the Jones Act.

The US has currently only one “windpark”, Block Island near NYC: 5 turbines with a 30 MW capacity, build by Europeans. When the Norwegian shipping company Fred Olsen crossed the Atlantic, the installation ship was not allowed to dock in a US harbor. This is not good for US offshore wind.

Now a Dutch company GustoMSC has come up with a simple design that can be constructed and operated by Americans and as such start the long overdue offshore wind development near the US coasts.

[gustomsc.com] – GustoMSC Reveals SEA-3250-LT
[wikipedia.org] – Merchant Marine Act of 1920 (“Jones Act”)
[deepresource] – The Seven Brothers – Europe Taking Lead in US Offshore
[deepresource] – The Enormous Energy Potential of the North Sea
[wattisduurzaam.nl] – Antieke wet frustreert offshore wind in VS, Nederland schiet te hulp

Evaporation as a Renewable Energy Source?

A few basic facts about water:

Specific heat of water 4.2 kJ/kg/°C [*]
Heat of evaporation of water: 2256 kJ/kg [**]

[*] – energy required to increase temperature of water with 1 °C
[**] – energy required to turn 1 kg of water of 100 °C into vapor of 100 °C

In other words: it takes just as much energy to bring water from 46 °C to 100 °C as it takes to turn boiling water of 100 °C into water vapor of 100 °C. Or in other words: there is a lot of energy associated with phase change. That energy can be won back by condensing vapor back into water. This is what essentially happens in a steam engine: coal is used to heat water and turn it into steam. Next the steam is expanded in a cylinder where it is condensed. Part of the evaporation heat is converted into the desired mechanical energy or motion. Or think of stepping out of the shower dripping wet. You will feel cold because the drops on your body evaporate, which takes a lot of energy which is extracted from your body.

In nature evaporation and condensing of water happens on a gigantic scale, think of rain. Is there a way of capturing some of this energy for human purposes and convert it into useful energy? Scientists of the University of Columbia think there is. The place to generate electricity would by near the surface of lakes (uh-oh). Spores are attached to a surface, absorb water vapor and expand in volume. The useful energy is generated when the spores release the water as vapor which drives a motor. As MIT Technology Review previously reported:

“An eight-centimeter-by-eight-centimeter water surface can produce about two microwatts of electricity (a microwatt is one-millionth of a watt), on average, and can burst up to 60 microwatts.”

That would be 12.5 * 12.5 * 2 microwatt per m2 or 312 microwatt or 0.312 milliwatt/m2. Which is not too impressive to say the least. A solar panel of 1 m2 in contrast can bring you up to 150 Watt. That’s a difference of 48,000 in efficiency.

Next.

[nature.com] – Potential for natural evaporation as a reliable renewable energy resource
[theverge.com] – Water evaporation could be a promising source of renewable energy
[technologyreview.com] – Evaporation Engines Could Produce More Power Than Coal, with a Huge Caveat

Solar Panel Automation Production Line

The Growing Importance of IJmuiden as Offshore Wind Hub

The Netherlands, currently the bottom of the barrel in Europe as far as installed renewable energy is concerned, has ambitious plans to change that. The port of IJmuiden, 15 km West of Amsterdam. wil play a central role in building more than 14 GW of offshore wind power in the coming years. Projects IJmuiden Ver and Hollandse Kust (“IJmuiden Far” and “Dutch Coast” resp.).

[offshorewind.biz] – A Hub in the Netherlands
[Google Maps] – IJmuiden

Read more…

First Full Scale Hyperloop Test Track to be Build in Toulouse, France

Hyperloop Transportation Technologies (HTT) is a mode of underground transport in a sealed tube or system of tubes through which a capsule travels free of air resistance or friction conveying people or objects at very high speed of up to 1200 kmh or twice the speed of a short or medium range plane. This would mean that a distance between Paris and Lyon of 466 km would take less than half an hour to bridge. Toulouse announced it will build the world’s first full scale HTT system in the world, for test purposes. Proposed advantages: low energy, silent, fast, 3m tube can be buried underground with no disruption of the landscape. Would make medium range flying, like in Europe, superfluous.


[wikipedia.org] – Hyperloop

Read more…

Dutch Renewable Energy Subsidies Q1+Q2, 2017

Overview subsidized renewable energy projects in the Netherlands to the tune of 5.8 billion euro. Half of that amount went to solar projects. The other half mostly to wind, biomass and some geothermal.

[nrc.nl] – Hoe komt Nederland aan 20 procent duurzame energie?

IEA – The State of the Energy Transition 2017

Diagrams below:

Read more…

“Assembling Offshore Wind-towers Onshore is Cheaper”

State of the art offshore installation. Can it really be done more economically than this?

The cheapest and fastest way to install an offshore wind turbine is to assemble it completely onshore first, including the monopile. That’s the outcome of research done by the University of Delaware. The method employed is to not work with a single large monopile ramed into the sea floor, but with several “buckets” that are suctioned into the sea floor at less depth and less acoustic impact for sea mammals. Starting base was a hypothetical large 1 GW offshore wind farm in the Delaware Wind Energy Area off Rehoboth Beach, Del., using the port near Delaware City and working with 10 MW turbines. Results: $1.6 billion less cost and only half the construction time.

[udel.edu] – Industrializing Offshore Wind Energy Development
[4coffshore.com] – Suction Bucket or Caisson Foundations
[offshorewind.biz] – University of Delaware

Read more…

Wind Power Returns to Shipping

No it is not sails, but rotating cylinders, generating the Magnus effect.

Hywind Scotland – the World’s First Floating Wind Farm Operational

Offshore wind no longer tied to shallow water, up to 800 m deep is workable.

Post Navigation