Observing the world of renewable energy and sustainable living

Archive for the category “hydrogen”

Water Splitting Catalyst Breakthrough?

Molecular models representing a 2D heterostructure made of graphene (gray background hexagonal lattice), and islands on top of hexagonal WS2 and MoS, as well as an alloy of the two. Water (H2O) molecules in red (oxygen) and gray (hydrogen) come from the bottom left hand side and get transformed catalytically after interacting with the heterostructures into H2 bubbles (top right hand side). Credit: Penn State Materials Research Institute.

Platinum is a near perfect catalyst for splitting water molecules into hydrogen and oxygen. The only drawback is that it is very expensive. Researchers from Houston, Penn State and Florida State University claim to have found a cheaper replacement: Molybdenum disulfide (MoS2). A Swiss team already proposed this solution in 2011.

No efficiency numbers are given.

The Wiley link from 2016 mentions 12.4%

[] – Low cost, scalable water splitting fuels the future hydrogen economy
[] – Researchers report new, more efficient catalyst for water splitting
[] – Amorphous MoS2 films as catalysts for electrochem. H2 prod. in H2O
[] – Amorphous Molybdenum Sulfides as Hydrogen Evolution Catalysts
[] – MoS2 as a co-catalyst for photocatalytic hydrogen production from water
[] – Molybdenum disulfide
[] – Gibbs free energy


Water Electrolysis in Mainz

The German city of Mainz is situated in the Bundesland (province) Rhineland-Palatinate, which has the ambition of eliminating fossil fuel from electricity production completely by 2030. For that purpose a storage solution for regenerative energy needs to be found. Mainz has built a facility based on electrolysis of water, producing hydrogen and oxygen. Their Siemens Silyzer 200 PEM electrolysis system operates with a conversion efficiency of 65-70%.

Siemens Silyzer 200 PEM electrolysis system

[] – Energiepark Mainz, official site
[] – Energy Park Mainz A Project for the Industry
[] – Mainz claim to have the world’s largest green hydrogen plant
[] – SILYZER 200 (PEM electrolysis system)
[] – Electrolyzer Manufacturers Stake Their Claims

Read more…

Future of E-Vehicles: Battery or Fuel Cell?

The world’s elites seem to agree that e-vehicles are the future. The remaining question is: what will power them? Batteries or fuel cells. Or put differently: will hydrogen be included in the energy conversion scheme? Trillions of euros/dollars are at stake here.

The video claims that batteries have won. It is however possible to find support for either point of view, see links below.

Comment: our tentative conclusion would be that fuel cells will win because of the storage aspect of hydrogen. After all, the renewable generated electricity will need to be stored somewhere anyway. Why not in hydrogen that can be directly used in cars?

[] – Fuel Cell and Battery Electric Vehicles Compared
[] – Why the Automotive Future Will Be Dominated by Fuel Cells
[] – Majority of automotive execs still believe battery-powered cars will fail and fuel cells are the future
[] – Why hydrogen fuel cell cars are not competitive — from a hydrogen fuel cell expert

Read more…

Fuel Cells in Shipping

German language video

Global shipping is a major polluter. Efforts are underway to eliminate the use of oil fuel. A replacement candidate is hydrogen-based fuel cells. Hydrogen produced with renewable electricity is converted into electricity, that drives and elektro-motor and propeller.

[] – e4ships – fuel cells in marine applications
[] – Brennstoffzelle und Schiffe: Sauber auf See

HY4 – World’s First Fuel Cell Hydrogen Plane

On September 29, 2016, the first plane with a fuel cell propulsion took off from Stuttgart airport in Germany.

Empty mass: 630 kg (battery 130 kg, fuel cell 100 kg)
Max. total weight: 1500 kg
Max. speed: 200 kmh
Cruise speed: 145 kmh
Range: 750-1500 km (depending on battery)
Capacity: 4 passengers

[] – HY4
[] – Official site
[] – Das Brennstoffzellenflugzeug wird viersitzig

[] – Hydrogen-powered aircraft

Read more…

Hydrogen Europe

From the official site:

Hydrogen Europe (formerly known as NEW-IG) is the leading European industry association representing over 100 companies and national associations in the fuel cells and hydrogen sector.

Following the renewal of the Fuel Cells and Hydrogen Joint Undertaking under Horizon 2020 (budget 1.3 billion EUR), the association decided to step up its ambition in advocacy towards EU policy-makers beyond this partnership and thereby transform Hydrogen Europe into a full-fledged European industry body with full external reach.

In so achieving, Hydrogen Europe is building a second pillar within the association comprising European National and Regional fuel cell and hydrogen associations. The underlining objective is to bring together fuel cell and hydrogen industry and national/regional associations in order to streamline and enhance advocacy efforts and ultimately strengthen the European fuel cell and hydrogen sector as a whole.

[] – Official site
[] – Jorgo Chatzimarkakis

Interreg – North Sea Region – HyTrEc2

HyTrEc 2

The key aim of HyTrEc 2 is to create conditions so that a Hydrogen Fuel Cell Electric Vehicles market can develop, and promote the NSR as a Centre for Excellence for fuel cells and range extenders. The project will reduce the cost of hydrogen vehicles and reduce CO2 emissions by:

  • Improving the operational efficiency of a wide range of vehicles such as vans, large trucks and refuse collection vehicles.
  • Improving the supply chain and training so that the NSR becomes a Centre of Excellence for hydrogen transport and a competitive environment is formed
  • Developing innovative methods for the production, storage and distribution of green hydrogen.
  • Ensuring that the NSR is the dominant region in the EU in terms of hydrogen transport. The project will complement national


  • European Institute for Innovation Technology e.V.
  • Aberdeen city council
  • Centre of Excellence for Low Carbon and Fuel Technologies
  • Hogskolen i Narvik
  • SP Sveriges Tekniska Forskningsinstitut
  • Provincie Drenthe
  • Gemeente Groningen
  • Aberdeenshire Council

[] – HyTrEc2, green transport and mobility
[] – HYTREC 2

Read more…

Hyundai FE Fuel Cell Concept

Geneva car show presentation of the 2018 Hyundai fuel cell SUV. Range 800 km (500 km probably more realistic). Efficiency fourth generation fuel cell 60%, 9% better than the previous generation. Worldwide distribution as of 2018. 120 kW electromotor. Low temperature starting problems should have been solved.

[] – Dit is Hyundai’s next-gen waterstof-SUV, met 800 km bereik

Van Hool Hydrogen Buses

[] – Hybrid fuel cell bus
[] – Van Hool

Read more…

Solar-Hydrogen-Future Crash Course

Youtube text: Published July 14, 2014. This 22 minute video gives a detailed account for why—given the urgency of our times—Solar Hydrogen technology offers the most promising global energy strategy for the next 2 decades.

Electrolysis of Water

2 H2O(l) → 2 H2(g) + O2(g)

In the world of fossil fuel, the fuel is the storage medium. Coal, gas and oil can can be conveniently stored until they are needed. With solar and wind that option doesn’t exist. There can be a large mismatch between supply and demand that needs to be bridged. One of the storage options is hydrogen that can be won from electrolysis of water on the very moment that renewable electricity is produced.

The idea of using hydrogen as the central storage facility originates from 1970, when the term ‘hydrogen economy’ was minted. The advantages are clear: high energy density per unit of weight and clean burning with only water coming from the exhaust. The disadvantages are explosiveness and extremely low temperatures required to liquefy hydrogen in order to achieve high energy density per unit of volume as well. Hydrogen can be used to burn like gasoline and converted into mechanical energy or transformed chemically in a fuel cell to produce electricity. In both cases hydrogen is combined with oxygen to produce water.

As with any conversion technology, the aim is to minimize energy losses and achieve high efficiency. In this post you will find videos that highlight the electrolysis process.

[] – Electrolysis of water
[] – Fuel cell
[] – Hydrogen economy
[] – Jeremy Rifkind, The Hydrogen Economy
[] – What’s the ‘hydrogen economy’?
[] – SILYZER 200 (PEM electrolysis system)
[] – The Green Hydrogen Economy in the Northern Netherlands

Read more…

First Climate Neutral Power Station in The Netherlands

[source] Magnum power station, 8 billion euro, 1.3 GW, high efficiency (58%) natural gas power station that was built from 2009 in Eemshaven in the north of The Netherlands.

A memorandum of understanding has been signed between Statoil, Vattenfall and Gasunie last month. The intention is to convert one of the existing three units of the Magnum power plant in Eemshaven into a facility where hydrogen rather than natural gas will be burned as of 2023. Statoil will produce the hydrogen from natural gas, but will store the resulting CO2 byproduct under ground. This will result in the first climate neutral hydrogen power station in the world (440 MW). Currently Norway is busy constructing a so-called CO2-vault of its west coast and likes to see the Dutch power station in Eemshaven as one of its first customers.

The production of hydrogen from natural gas is merely a temporary solution and must be seen as a preparation for a later stage, when the hydrogen must come from the new offshore wind power stations in the neighboring North Sea, where electricity will be used in an electrolysis process to split water in hydrogen and oxygen. The hydrogen will be converted into ammonia for easier storage and eventually be burned at Magnum. Hence the description of the power station as an “ammonia battery“.

[] – Evaluating conversion of natural gas to hydrogen
[] – Magnum (energiecentrale)
[] – Eerste klimaatneutrale energiecentrale ter wereld komt in Eemshaven
[] – First ever climate neutral power plant
[] – Aandacht in Den Haag voor noordelijke energie ambities

Read more…

Prof. Ad van Wijk

“There is no energy crisis” is the adage of prof van Wijk. Lecture Masdar Institute of Technology in Abu Dhabi.

The concept of the “hydrogen economy” is still very much alive in The Netherlands and one of its main proponents is prof. Ad van Wijk, sustainable energy entrepreneur and part-time Professor Future Energy Systems at the Delft University of Technology.

Van Wijk is currently pushing for the North of the Netherlands to embrace the hydrogen economy as a substitute for the outgoing natural gas age, to be fueled by rise of the North Sea as the coming energy power house of the Netherlands and the EU.

[] – The Green Hydrogen Economy in the Northern Netherlands
[] – Ad van Wijk twitter account

Read more…

Trucks on H2 Generated by Wind turbines in the Netherlands

In the Dutch province of North-Holland next year several trucks will drive on hydrogen generated by dedicated onshore and offshore wind turbines, equipped with electrolysis devices. Project name DUWAAL. Hydrogen will be piped to the shore for that purpose. Eventually at least 100 trucks should drive on hydrogen from this pipeline network.

One of the participants is E-Trucks Europe. The company reconfigures existing trucks to electric trucks based on a hydrogen fuel cel. E-Trucks Europe has begun to build two dedicated factories in Westerhoven and Lommel (Belgium).

[] – Per 2018 vrachtwagens op waterstof uit windmolens
[] – Diverse doorbraken: nu 4 projecten die er echt voor gaan
[] – Vrachttransport op H2 in 2018 mogelijk door inzet windmolens
[] – Vrachttransport op waterstof eind 2018 mogelijk door inzet windmolens
[] – E-Trucks Europe site

Garbage Truck on Hydrogen in Eindhoven, the Netherlands

Garbage collector Cure in Eindhoven is successfully operating a hydrogen-powered garbage truck since November 2013 in the city of Eindhoven in the South of the Netherlands. The truck can drive around for a full day without having to be refueled. The e-truck is a DAF CF FA with a battery-only range of 200 km, but is now equipped with a hydrogen fuel cell range-extender, leading to total range of 360 km.

[] – Waste collection vehicle using a hydrogen fuel cell
[] – Vuilniswagen op waterstof rijdt een jaar succesvol rond voor papierophaling in Eindhoven

[] – Eerste Braantse Waterstoftankstation Geopend in Helmond

Hydrogen – Fuelling our Future?

Can hydrogen be the successor of petrol and natural gas after all?

[] – Hydrogen

Cost Hydrogen From Renewable Energy

Cost of H2 production via electrolysis of water as a function of electricity cost

In a not too distant past the “hydrogen economy” was thought to be the follow up of the fossil fuel economy. The idea was to use hydrogen as the central storage medium.

Fuel Energy density [kWh/kg]
Hydrogen (H2) 39
Methane/natural gas 15
Diesel 13
Petrol 13
Jet fuel/kerosine 13
Ethanol 7
Ammonia (NH3) 6
Wood 5

[] – Hydrogen economy

Enthusiasm for that concept has come down considerably since, mostly because of fundamentally low conversion efficiency (50-80%) and storage problems. But that doesn’t mean that hydrogen couldn’t play a role in a renewable energy future. This IEA article makes the case that renewable hydrogen production for NH3 (Ammonia), to be used as fertilizer in agriculture, could become viable in the near future, circumventing at least the hydrogen storage problem (boiling point −252.879 °C (−423.182 °F, 20.271 K)), by converting it immediately into Ammonia (boiling point −33.34 °C (−28.01 °F; 239.81 K)).

Indeed, producing hydrogen via renewable energy is not a new idea. Until the 1960s, hydrogen from hydropower-based electrolysis in Norway was used to make ammonia – a key ingredient for agricultural fertilizers. But with increasingly lower renewable costs, renewables-based hydrogen production could once again be competitive with SMR (steam methane reforming)…
But under the right conditions, producing industrial hydrogen in this fashion could have massive consequences for the sustainability of one industry in particular – agriculture. About half of industrial hydrogen is used in ammonia production. Ammonia production alone is responsible for about 360 million tonnes of CO2 emissions each year, or about 1% of the world’s total emissions. By 2050, we expect that the consumption of ammonia will increase by around 60%.

[] – Producing industrial hydrogen from renewable energy
[] – Energy density
[] – The hydrogen economy, Jeremy Rifkin (2003)

Artificial Sun For Climate Friendly Fuel

The vision of cars driven by hydrogen has not materialized. Instead the battery and electricity seem to have won the competition. With airplanes it is different. Although electric planes could be reality in a decade or so, for longer distances this is not an option. Hydrogen could very well be.

The German Aerospace Centre DLR in Jülich has recently opened a research facility consisting of an artificial sun, with an intensity of 10,000 times the original. The idea is is to study how sun light can be used to generate “solar fuels”, like hydrogen.

[] – German Scientists Just Tested the ‘World’s Largest Artificial Sun’
[] – Sun at the push of a button
[] – Duitse kunstzon wijst de weg naar waterstof-vliegtuig

World’s First Hydrogen-powered Tram Rolls off Assembly Line

We don’t believe in the hydrogen economy, much hyped in the past, for the simple reason that hydrogen does not exist in nature and needs to be produced. That production invariably goes hand in hand with conversion losses. So why would you want to use electricity, generated by solar or wind, to produce hydrogen first, to power a tram with it next. It makes more sense to directly pump the electricity in the grid and use it to power the tram in the conventional way.

Hydrogen perhaps has its place as a means to store energy for selected niche applications in a renewable energy economy, but the best way to store energy is in batteries or pumped hydro storage in mountainous areas.

The hydrogen economy won’t fly as things stand now.

[alternative-energy-news] – Hydrogen-powered tram developed in China

[] – Hydrogen economy

Efficiency electrolysis water:

Current best processes have an efficiency of 50% to 80%

So you already lost 20-50% in the conversion process electricity –> H2.

An Otto cycle internal-combustion engine running on hydrogen is said to have a maximum efficiency of about 38%, 8% higher than a gasoline internal-combustion engine.

Compare that to the efficiency of an electric motor:

BLDC motors are typically 85–90% efficient or more. Efficiency for a BLDC motor of up to 96.5% have been reported, whereas DC motors with brushgear are typically 75–80% efficient.

See? Hydrogen does not make sense at all in the case of trams.

[] – Why a hydrogen economy doesn’t make sense

In a recent study, fuel cell expert Ulf Bossel explains that a hydrogen economy is a wasteful economy. The large amount of energy required to isolate hydrogen from natural compounds (water, natural gas, biomass), package the light gas by compression or liquefaction, transfer the energy carrier to the user, plus the energy lost when it is converted to useful electricity with fuel cells, leaves around 25% for practical use — an unacceptable value to run an economy in a sustainable future. Only niche applications like submarines and spacecraft might use hydrogen.

Perovskite Solar Cell Produces Hydrogen at 12.3% Efficiency

Hydrogen and oxygen bubbles.

Solar panels are on the march worldwide. One of the disadvantages of solar power however is its intermittent character, making storage an essential ingredient of every solar based energy system. Researchers of the École Polytechnique Fédérale de Lausanne (epfl) have presented a new Perovskite solar cell able to split water and produce hydrogen at an acceptable efficiency of 12.3%. Hope exists that this efficiency could increase to 20% by applying semi-conductors. This could breathe new life into the moribund hydrogen economy. As things stand now large scale hydro storage is the most attractive proposition backing up a large scale renewable energy system.

[] – Billig-Zelle verwandelt Licht in Wasserstoff
[] – Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
[wikipedia] – Michael Grätzel
[] – Perovskite Solar Cells Beat New Records (In The Lab)

Note that Lausanne combined perovskite solar cells with electrochemistry.


Over the last five years, perovskites have been found to rival the efficiency and cost of silicon in converting sunlight to electricity.

Post Navigation