DeepResource

Observing the world of renewable energy and sustainable living

Archive for the category “electricity”

Nera – The World’s First Fully 3D-Printed e-Motorbike

[cnn.com] – Electric 3D-printed motorbike provides a glimpse into the future of green travel

Structure Electricity Prices Europe

[source]

[source]

[source]

Visie2030 – TenneT en het Landelijk Electriciteitsnetwerk

Waarom hebben wij deze toekomstvisie ontwikkeld? TenneT werkt continu aan een betrouwbaar en adequaat hoogspanningsnet. Om goed in te spelen op de behoeftes van de Nederlandse maatschappij, publiceren wij iedere twee jaar een Kwaliteits- en Capaciteitsplan. Hierin blikken we zeven jaar vooruit naar de mogelijke aanpassingen die we moeten uitvoeren om de levering van elektriciteit in de toekomst veilig te stellen. Dit plan vormt de basis voor eventuele uitbreiding op de middellange termijn.

Het ontwikkelen en realiseren van hoogspanningsverbindingen over grotere lengtes en daarmee samenhangende nieuwe stationslocaties duren geregeld langer dan zeven jaar. Dit komt door de procedures en daarbij behorende voorbereiding. Het ontwikkelen van nieuwe centrales (“de vraag”) daarentegen vergt slechts 3 tot 5 jaar.

Aangezien de toezichthouder niet toelaat dat wordt “voorgeïnvesteerd”, de jaarlijkse monitoring onvoldoende tijdig investeringsplannen van marktpartijen weergeeft, maar de samenleving wél verwacht dat nieuwe eenheden tijdig kunnen worden aangesloten, is het vormen van een robuust beeld van het toekomstige net noodzakelijk. Met een dergelijk beeld kan in een vroege fase worden begonnen met voorbereidingen.

Daarom is een tijdig beeld van mogelijke toekomstige ontwikkelingen en daarmee samenhangende knelpunten nodig. Een analyse van de langetermijnontwikkelingen van de Nederlandse elektriciteitsvoorziening is daarbij van belang. Met deze Visie2030 geven we hier invulling aan.

We willen met onze langetermijnvisie op de netinfrastructuur bovendien adequaat inspelen op de door de samenleving gewenste transitie naar een duurzame energievoorziening.

[tennet.eu] – Visie2030, een langetermijnvisie van TenneT op het 380 kV en 220kV deel van het landelijke elektriciteitstransportnet.

Connecting Remote Renewable Power Generation to the Market

Siemens video highlights HVDC technology as the effective solution to transmitting renewable power over long distances.

[wikipedia.org] – High-voltage direct current
[power-technology.com] – The world’s longest power transmission lines (2014)
[wikipedia.org] – List of HVDC projects

Name Country Length (km) Voltage (kV) Year Power (GW)
Rio Madeira Brazil 2385 600 2012 7.1
Jinping-Sunan China 2090 800 2012 7.2
Xiangjiaba-Shanghai China 1980 800 2010 7.2
Inga-Kolwezi Congo 1700 500 2009 0.5
Talcher-kolar India 1450 500 2003 2.5

Cobra Sub-Sea Cable Project Near Completion

The COBRA sub-sea cable interconnector between Denmark and the Netherlands is nearing completion and operations will begin early 2019. Another leg of the European Supergrid will have been realized.

[cobracable.eu] – Project site
[wikipedia.org] – COBRA cable
[deepresource] – Construction Started COBRA Cable Netherlands-Denmark
[deepresource] – European Supergrid Submarine Cables – Inventory & Plans

New Impetus Street Car Ground Level Power Supply

Bordeaux street cars, still with old-fashioned catenary

The French city of Bordeaux was the first to replace the catenary of its street cars and replaced it with a third ground rail. After 2011 the technology has been adopted in Reims, Angers (both France) and Dubai. The system is safe for humans and animals. Wikipedia:

APS uses a third rail placed between the running rails, divided electrically into ten-metre rail segments with three-metre neutral sections between. Each tram has two power collection shoes, next to which are antennas that send radio signals to energise the power rail segments as the tram passes over them. At any one time, two consecutive segments under the tram will be live.

[agencias.pr.gov] – Pioneering Light Rail System in Bordeaux
[onlinepubs.trb.org] – Light Rail Without Wires
[wikipedia.org] – Ground-level power supply

Below, how Bordeaux ground-level power supply looks like:

38% Electricity OECD Europe Renewable

More than gas and coal combined (March 2018).

[twitter.com] – IEA

[iea.org] – Monthly Electricity Statistics

Enyway – kWh Flea Market

Enyway is a new market for locally produced electricity and spin-off of a large renewable energy producer Lichtblick (“glimmer of hope”), a sort of AirBnB for electricity. Enyway is not a producer but a market place, a mediator. If you have a spare roof or unused piece of land, you can install solar panels and directly sell you electricity to others via the Enyway portal. This development could encourage private investment in renewable energy. The key-success factor could be the feed-in tariff system, that could be abolished soon, now that the energy transition is in full swing. Local producers could use this to sell their renewable energy to buyers, who prefer renewable energy over fossil-generated kWh’s. The real upshot is that new investment opportunities open up for private persons. increasing the speed of the energy transition.

[enyway.com] – Company portal
[spiegel.de] – Diese Mühle erzeugt 100.000 Kilowattstunden Strom
[de.wikipedia.org] – Lichtblick (Unternehmen)

NordLink – Connecting Germany and Norway

[wikipedia.org] – NordLink

Dutch Energy Figures

Dutch electricity supply. Currently almost all electricity consumed is produced in the Netherlands. The plan in accordance with the EU is to replace almost all fossil generated electricity by renewable power by 2050 at the latest.

Electricity consumption: 120 billion kWh/year
Electricity per capita: 7085 kWh/year
Total installed capacity: 31.5 GW
Average consumption: 13.7 GW
Total connections: 8 million

Capacity factor latest North Sea wind farms: 50%
Assuming no storage losses then you would need 27.4 GW offshore nameplate wind power to meet current Dutch electricity demand levels. By 2023 4.5 GW are expected to be installed in the North Sea. Already allocated but not all covered with tenders yet are:

Borssele: 2064 MW
Hollandse Kust: 7350 MW
IJmuiden Ver: 7020 MW
Waddeneilanden: 1200 MW
Total: 17.5 GW

No fixed time table for these 17.5 GW exist, but if the first 4.5 GW are realized in 2023, you can expect that new capacity will be built with existing offshore production capacity in at least the same pace or higher. Since we already have 1 GW installed, the remaining 4.5-1=3.5 GW would take 5-6 years or 640 MW/year. The remaining 17.5-4.5=13 GW would require an additional 13/0.64=20 years or 2043 with existing installation capacity. In reality the offshore wind industry is rapidly growing and the targeted 17.5 GW will be achieved earlier, probably much earlier. Expect that by 2050 the Netherlands will enjoy the renewable energy consumption enabling them to continue the current affluence levels and will have created new large wealth creating industries in the energy and storage sector. Note that these figures do not include existing or future wind and solar capacity onshore.

After that the sky is the limit because the offshore industry could sell a lot of electricity or its hydrogen derivative abroad. Expect NW-European offshore wind industry like Vestas, Orsted (Dong), Siemens, SiF, Van Oord and many others to take over from big oil names like Gazprom, Exxon, Texaco, BP, Shell and many others. Or as president Gorbachev uses to say: He who comes too late is punished by life.

The good news is that in 2018 corporations are competing to develop offshore wind parks without a dime of subsidy, neither for the infrastructure nor for the kWh’s brought onshore. Paying market prices for kWh’s brought onshore is enough for them to be profitable. All the government has to do is allocate offshore locations and pay for the cables.

[energywatch.eu] – Statoil submits bid in Dutch zero-subsidy tender
[renewablesnow.com] – Vattenfall to bid in Dutch subsidy-free offshore wind tender

The only remaining challenge is storage, a considerable one, but manageable. It is likely that hydrogen from electrolysis is going to play a big role here.

17.5 GW nameplate power would mean 8.8 GW continuously or 64% or 2017 electricity demand. That would be enough to uphold a reasonable affluent society. It would be like living in 1980, albeit with electricity consuming devices (lights, television, fridges) that are far more energy efficient. But it is far more likely that by 2050 more than the current 13.7 GW average consumption will be brought onshore, providing electricity for trains and e-vehicles as well. The Dutch train system is already fully covered by wind. And here a calculation that you need merely 222 wind turbines of 6 MW each to power the entire Dutch personal car fleet.

According to new legislation, every home in the Netherlands needs to be energy neutral by 2030. No natural gas connection will be guaranteed for new homes. This requires solar panels, thermal collectors, heat pumps and thorough thermal insulation measures. It is ambitious but feasible.

[cbs.nl] – 2015-elektriciteit-in-nederland
[energynumbers.info] – Capacity factors Danish offshore wind farms
[noordzeeloket.nl] – Dutch plans North Sea Wind (map)
[rijksoverheid.nl] – Bedrijfsleven bereid zonder subsidie windpark op zee te bouwen

P.S. the goal of the Dutch government is to have 6 GW wind power installed onshore by 2020.

Sites with lower capacity factors may be deemed feasible for wind farms, for example the onshore 1 GW Fosen Vind which as of 2017 is under construction in Norway has a projected capacity factor of 39%. Certain onshore wind farms can reach capacity factors of over 60%, for example the 44 MW Eolo plant in Nicaragua had a net generation of 232.132 GWh in 2015, equivalent to a capacity factor of 60.2%, while U.S. annual capacity factors from 2013 through 2016 range from 32.2% to 34.7%.

Let’s assume a capacity factor of 50%, that would mean that another 3 GW continuously (including not yet installed storage) are added to the mix as early as 2020.

[deondernemer.nl] – Zo waait de wind in ondernemersland
[wikipedia.org] – Capacity factor

And then there is solar:

[hollandsolar.nl] – Marktontwikkeling zonnestroom
[goedkopeenergieengas.nl] – Opbrengst zonne-energie groeit met 40 procent

Summary: by the end of 2016 there was 2.0 GW peak Watt PV-solar installed, which translates in 800 MW power continuously. By the end of 2017 the installed power had increased with 40%. So we can assume 1.1 GW of PV-solar power. The government wants solar panels on every suitable roof and the public is picking up the signal. In every street there are at l east a few houses that have panels on the roof, which will impose the question on the laggards: “when us?”, just like with owning a car or having an internet connection. Nobody wants to stay behind and everybody wants to be “green”. One of the largest energy providers in the Netherlands Eneco believes that as early as 2030, 70% of renewable electricity can be covered by renewables.

German Grid Still Reliable Despite Growing Renewable Energy

Despite a growing share of renewable energy in Germany, the grid remains as stable as ever: the average German has on average to endure a 11.5 minute/year blackout. Although grid stability will become an increasing challenge, for the moment everything is still fine.

[wattisduurzaam.nl] – Duitse stroomnet ondanks pieken windenergie superbetrouwbaar

European & German Electricity Production Data

Net electricity generation, EU-28, 1990-2015 (TWh)

A annual electricity generation of 3000 TWh is equivalent of 342 GW continuous average power.

Breakdown of electricity production by source and European country, 2016 (in %)

[ec.europa.eu] – Electricity production, consumption and market overview
[entsoe.eu] – Electricity in Europe 2015

Read more…

Daimler Invests €25M in Volocopter Air Taxi

Speed: over 100 kmh
Altitude: 2000 m
Flyweight: 450 kg
Airtime: ca. 1 hour

[reuters.com] – Daimler invests in flying taxi firm Volocopter
[engadget.com] – Daimler funds Volocopter’s autonomous flying taxi dreams
[de.wikipedia.org] – Volocopter
[volocopter.com] – Official site

Who Drives E-Vehicles?

[iea.org] – Global EV Outlook 2017 – Two million and counting
[twitter.com] – 80% of the electric cars on road worldwide are located in China, US, Japan, Norway and the Netherlands.

French Oil Giant Total Into Renewable Electricity

French oil giant Total follows in the footsteps of that other European oil major Shell, in betting on the success of renewable energy. This is no doubt influenced by the radical choice for renewable energy by the European Union, that wants to get rid of fossil fuel in Europe by 2050.

[investopedia.com] – Oil Giant Total Sees Bright Future in Electricity
[erpecnewslive.com] – Total commits to electric vehicle charging stations in France
[thebiojournal.com] – French oil giant Total expands into solar energy in Japan
[reuters.com] – France’s Total buys stakes in solar power start-ups
[theguardian.com] – Total invests £800m in US solar power firm
[eenews.net] – Could France’s Total reinvent the grid?
[aiche.org] – French Oil Major Total Is Gung-Ho for Solar, Batteries and Grid 2.0
[telegraph.co.uk] – French oil firm Total bets on renewable energy with near €1bn bid for battery maker Saft

Read more…

TenneT Doetinchem-Wesel 380kV

European supergrid latest. Construction of a 380kV electricity line between the Netherlands and Germany, which should replace the existing 1926 110kV line. Note the futuristic design of the pylons. EU “project of common interest” status.
Length: 57 km

[doetinchem-wesel380kv.nl] – Official project site
[de.wikipedia.org] – 380-kV-Leitung Wesel–Doetinchem

Read more…

Avionics V1

[avionics.bike] – Company site
[cleantechnica.com] – Is This The Coolest Electric Bicycle You Have Ever Seen?
[designboom.com] – Avionics V1 is a minimalist electric bike built from raw materials
[treehugger.com] – Avionics V1 is a distinctive & massively powerful retro-styled e-bike

Ubitricity Has a Cheaper Method of Charging E-Vehicles

[source] The new way to charge e-vehicles?

The large-scale introduction of e-vehicles could very well imply the need for large-scale electricity charging stations along the way-side, like this situation in Berlin:

[source]

This could become quite costly, not to mention endless amounts of ugly car-chargers littering the streets of the near future.

The German company Ubitricity has come up with an idea to reuse old lampposts to achieve the same charging performance, but much cheaper and no impact for the way streets look like.

[trouw.nl] – Maak van een oude lantaarnpaal een goedkope laadpaal

But nothing has decided yet as there are other methods in the works to recharge you e-vehicle… instantaneous at the pump, as usual!

[deepresource] – IFBattery – Instantaneous Recharging Batteries

And the Winner of the E-Vehicle Transition is… Norway!

Norway is ahead of everybody else in its ambition to get rid of the stinking petrol clunker once and for all. In 2017 the majority of new vehicles sold in Norway are e-vehicles. By 2025 all vehicles sold should be electric by law.

Why Norway? Because of government regulations and the convenient fact that Norway has a lot of hydro-power, the easiest form of renewable energy around, which ensures that e-driving is really clean and not a zero-sum game of moving emissions from a car exhaust to the fossil power station smoke stack.

And as the Dutch proverb goes: “if one (Norwegian) sheep has crossed the dam, more will follow.”

Like the Netherlands for instance. The flatlanders have no hydro-power worth mentioning, but ambitious offshore wind park plans, to be realized before 2023, providing enough electricity from wind to power an entire Dutch e-vehicle fleet. Like Norway, the Netherlands wants to phase out petrol cars after 2025.

[deepresource] – Suitable Offshore Wind Locations

The Dutch part of the North Sea could (in theory) power all European cars.

[deepresource] – Gemini Wind Farm Live Data

[bloomberg.com] – The Country Adopting Electric Vehicles Faster Than Anywhere Else

Read more…

Bloomberg – Peak CO2 Emission from Power Generation in 2026

CO2 emissions from power generation will peak in 2026, and be 4% lower in 2040 than they were last year, according to a new report by Bloomberg New Energy Finance (BNEF). Much of this will be due to “unstoppable” renewable energy sources undercutting the majority of existing fossil fuel power stations, with the cost of solar dropping 66% by 2040, and onshore wind by 47%.

[theactuary.com] – Global CO2 emissions to peak in 2026
[trouw.nl] – Energie uit zon en wind groeit veel sneller dan verwacht

Post Navigation