DeepResource

Observing the renewable energy transition from a European perspective

Wind-Powered Mobility in the Netherlands

We’re in the mood for a back-of-an-envelope calculation. Let’s calculate how much offshore wind energy is required if a country like the Netherlands would phase out private car ownership and replace that old mobility model with a new one, namely electric ride sharing, as is being experimented with now in Hamburg.

According to the Dutch government bean counting institute CBS (Centraal Bureau voor de Statistiek), in 2016 all ca. 8 million Dutch cars drove 118.5 billion km or 13,200 km per car. The average occupation rate is ca. 1,25. So the total amount of passenger-km is 118.5 billion x 1.25 = 148 billion km.

The Volkswagen Moia has a battery of 87 kWh and a range of 300 km. Let’s assume an average occupation rate of 5 passengers for the 7 available seats. That’s 0.29 kWh/km/vehicle or 0.058 kWh/km/passenger.

Now back to the Dutch figures. 148 billion passenger km, driven in Volkswagen Moia’s, with an average occupancy rate of 5 would amount to 148 billion x 0.058 kWh = 8584 GWh/year. The annual output of the currently largest Dutch offshore windpark Gemini is ca. 2600 GWh/year. In other words, the Netherlands would need merely 3.3 of those wind parks to enable the current level of private mobility. Much larger windparks than Gemini are in pipeline, like the 1400 MW Borssele I-V, scheduled for completion in 2021. Together, Gemini and Borssele would suffice.

Obviously more capacity needs to be calculated to compensate for storage losses. But the message is clear: it is very well possible to remain mobile in a climate-friendly fashion after the end of the fossil fuel age.

[cities-today.com] – Hamburg trials Europe’s largest electric ride-sharing service
[cbs.nl] – Forse groei autokilometers
[electrive.net] – Volkswagen-Ridesharing: Moin, MOIA!
[wikipedia.org] – Gemini Wind Farm

Single Post Navigation

Comments are closed.