DeepResource

Observing the renewable energy transition from a European perspective

Green Hydrogen Storage via Methylcyclohexane (C7H14)

The Japanese companies Eneos and Chiyoda claim to eventually be able to produce green hydrogen for a third of the cost of today. Through a patented electrolysis method, the cost of the equipment can be reduced to $3 per kilo hydrogen in 2030 and even to $2 later. The hydrogen will be stored in the liquid C7H14. And since the cost of a solar kWh in the desert is about 1 euro cent, the cost of the electrolyser equipment almost equals the total cost of hydrogen.

The method developed by Eneos and Chiyoda enables the electrolysis of water and toluene simultaneously, rather than through separate processes, to form methylcyclohexane (C7H14). This simplification of the process cuts equipment investment in half.

Liquid C7H14 will be supplied at ambient temperature to power plants and other facilities where hydrogen will be produced from it for energy. This is much more cost effective than delivering hydrogen, which must be transported at -253 ° C in a special container.

Conventional oil technology can be used to handle the methylcyclohexane at ambient conditions.

The upshot is that the world has now NH3, C7H14 and NaBH4 to choose from as possible carriers of hydrogen. No doubt there are many more chemical storage possibilities.

[gadgettendency.com] – Japan has found a way to reduce the cost of “green” hydrogen by two-thirds
[asiatimes.com] – Japanese firms aim to slash hydrogen costs
[energy.gov] – Introduction of Liquid Organic Hydrogen Carrier and the Global Hydrogen Supply Chain Project
[nature.com] – A final link in the global hydrogen supply chain

Demo plant in Brunei, realizing the world’s first hydrogen chain.

Single Post Navigation

Comments are closed.